马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?立即注册
x
1. 源码分析
注意:以下代码片段为方便明确已举行简化,只保留了与序列化功能相关的代码
序列化的源码中涉及到了元类的概念,我在这里简单阐明一下:元类(metaclass)是一个高级概念,用于定义类的创建行为。简单来说,元类是创建类的类,它决定了类的创建方式和行为。
在 Python 中一切皆为对象,包括类。每个类都有一个元类,它定义了如何创建这个类。通常情况下 Python 会使用默认的元类 type 来创建类。但是,当我们需要对类的创建过程举行自定义时,就可以使用元类,举例:- class Mytype(type)
- def __new__(cls,name,bases,attrs): # 类名,继承的父类 ,成员
- # 此处可对要创建的类进行操作
- del attrs["v1"]
- attrs["name"] = "harry"
-
- xx = super().__new__(cls,name,bases,attrs) # 调用type类创建对象(这个对象就是Bar类)
- retyrn xx
-
- class Bar(object, metaclass=Mytype) # metaclass指定自定义元类
- v1 = 123
-
- def func(self):
- pass
-
- 由于元类中删除了v1属性,且增加了name属性,因此此时Bar中无v1属性,且多了name属性
复制代码 另:父类如果指定了元类metaclass,则其子类都默认是用该元类来创建类
补充:实例化Bar类时,相当于是 type对象(),因此会触发type类的__call__方法,其中就调用了Bar的__new__和__init__,因此在实例化类时才会自动触发类的__new__和__init__方法。本质上是由于 对象() 而调用了type元类的call方法;
Serializers组件主要有两个功能:序列化和数据校验
- class DepartSerializer(serializers.Serializer):
- '''Serializer校验'''
- # 内置校验
- title = serializers.CharField(required=True, max_length=20, min_length=6)
- order = serializers.IntegerField(required=False, max_value=100, min_value=10)
- count = serializers.ChoiceField(choices=[(1, "高级"), (2, "中级")])
复制代码 查看Serializer的父类,可知其是通过SerializerMetaclass元类创建的- Serializer(BaseSerializer, metaclass=SerializerMetaclass)
复制代码 SerializerMetaclass元类源码:- class SerializerMetaclass(type):
- @classmethod
- def _get_declared_fields(cls, bases, attrs):
- fields = [(field_name, attrs.pop(field_name)) # 通过循环获取field字段对象
- for field_name, obj in list(attrs.items())
- if isinstance(obj, Field)]
- fields.sort(key=lambda x: x[1]._creation_counter)
- known = set(attrs)
- def visit(name):
- known.add(name)
- return name
- base_fields = [
- (visit(name), f)
- for base in bases if hasattr(base, '_declared_fields')
- for name, f in base._declared_fields.items() if name not in known
- ]
- return OrderedDict(base_fields + fields)
- def __new__(cls, name, bases, attrs):
- attrs['_declared_fields'] = cls._get_declared_fields(bases, attrs) # 为类中增加了_declared_fields属性,其中封装了所有的Field字段名及对应的对象
- return super().__new__(cls, name, bases, attrs)
复制代码 通过serializer.data触发序列化流程:- @property
- def data(self):
- ret = super().data # 寻找其父类BaseSerializer的data方法
- return ReturnDict(ret, serializer=self)
复制代码 BaseSerializer的data方法源码:- @property
- def data(self):
- if hasattr(self, 'initial_data') and not hasattr(self, '_validated_data'):
- msg = (
- 'When a serializer is passed a `data` keyword argument you '
- 'must call `.is_valid()` before attempting to access the '
- 'serialized `.data` representation.\n'
- 'You should either call `.is_valid()` first, '
- 'or access `.initial_data` instead.'
- )
- raise AssertionError(msg)
- if not hasattr(self, '_data'):
- if self.instance is not None and not getattr(self, '_errors', None):
- self._data = self.to_representation(self.instance) # 执行to_representation方法获取序列化数据
- elif hasattr(self, '_validated_data') and not getattr(self, '_errors', None):
- self._data = self.to_representation(self.validated_data)
- else:
- self._data = self.get_initial()
- return self._data
复制代码 to_representation方法源码(核心):- def to_representation(self, instance):
- ret = OrderedDict()
- fields = self._readable_fields # 筛选出可读的字段对象(其内部对_declared_fields字段进行了深拷贝)
- for field in fields:
- try:
- attribute = field.get_attribute(instance) # 循环字段对象列表,并执行get_attribute方法获取对应的值
- except SkipField:
- continue
- check_for_none = attribute.pk if isinstance(attribute, PKOnlyObject) else attribute
- if check_for_none is None:
- ret[field.field_name] = None
- else:
- ret[field.field_name] = field.to_representation(attribute) # 执行to_representation转换格式,并将所有数据封装到ret字典中
- return ret
复制代码 get_attribute方法源码:- def get_attribute(self, instance):
- return get_attribute(instance, self.source_attrs)
复制代码- def get_attribute(instance, attrs): # attrs为source字段值 instance为模型对象
- for attr in attrs:
- try:
- if isinstance(instance, Mapping):
- instance = instance[attr]
- else:
- instance = getattr(instance, attr) # 循环获取模型对象最终的attr的值
- except ObjectDoesNotExist:
- return None
- return instance # 返回该字段值
复制代码
2. 数据校验部分
使用is_valid方法校验数据,获取_errors数据,_errors存在则is_valid返回False。在执行该函数的过程中,触发了run_validation方法:- def is_valid(self, raise_exception=False):
- if not hasattr(self, '_validated_data'):
- try: # 触发了run_validation方法
- self._validated_data = self.run_validation(self.initial_data)
- except ValidationError as exc:
- self._validated_data = {}
- self._errors = exc.detail
- else:
- self._errors = {}
- if self._errors and raise_exception:
- raise ValidationError(self.errors)
- return not bool(self._errors)****
复制代码 run_validation方法,注意该方法是Serializer类下的方法,不是Field类的方法。在to_internal_value方法中调用字段内置校验,并执行钩子函数。- def run_validation(self, data=empty):
- (is_empty_value, data) = self.validate_empty_values(data)
- if is_empty_value:
- return data
- value = self.to_internal_value(data) # 调用字段内置校验,并执行钩子函数
- try:
- self.run_validators(value)
- value = self.validate(value)
- assert value is not None, '.validate() should return the validated data'
- except (ValidationError, DjangoValidationError) as exc:
- raise ValidationError(detail=as_serializer_error(exc))
- return value
复制代码 to_internal_value方法,fileds从_declared_fields中深拷贝而得到,且只包罗了只写的字段对象- def to_internal_value(self, data):
- if not isinstance(data, Mapping):
- message = self.error_messages['invalid'].format(
- datatype=type(data).__name__
- )
- raise ValidationError({
- api_settings.NON_FIELD_ERRORS_KEY: [message]
- }, code='invalid')
- ret = OrderedDict()
- errors = OrderedDict()
- fields = self._writable_fields # 筛选只写的字段对象
- for field in fields:
- validate_method = getattr(self, 'validate_' + field.field_name, None)
- primitive_value = field.get_value(data)
- try:
- validated_value = field.run_validation(primitive_value) # 执行内置校验
- if validate_method is not None:
- validated_value = validate_method(validated_value) # 执行钩子函数进行校验
- except ValidationError as exc:
- errors[field.field_name] = exc.detail
- except DjangoValidationError as exc:
- errors[field.field_name] = get_error_detail(exc)
- except SkipField:
- pass
- else:
- set_value(ret, field.source_attrs, validated_value)
- if errors:
- raise ValidationError(errors)
- return ret
复制代码 run_validation内置校验:- def run_validation(self, data=empty):
- if data == '' or (self.trim_whitespace and str(data).strip() == ''):
- if not self.allow_blank:
- self.fail('blank')
- return ''
- return super().run_validation(data)
- # 父类的run_validation方法
- def run_validation(self, data=empty):
- (is_empty_value, data) = self.validate_empty_values(data)
- if is_empty_value:
- return data
- value = self.to_internal_value(data)
- self.run_validators(value) # 调用字段定义的run_validators进行校验
- return value
复制代码 2、源码改编:
- 自定义钩子:让某字段既能支持前端传入,又能自定义序列化返回的值;(SerializerMethodField默认是只可读的,用户无法输入,而普通field又无法自定义复杂逻辑返回值)
思绪:在调用ser.data开始序列化后的to_representation方法中判断有无自定义格式的钩子,如果有则替换掉该字段对象的值- def to_representation(self, instance):
- ret = OrderedDict()
- fields = self._readable_fields
- for field in fields:
- if hasattr(self, 'get_%s' % field.field_name): # 判断是否有"get_xxx"形式的函数,如则执行该方法并将instance传入
- value = getattr(self, 'get_%s' % field.field_name)(instance)
- ret[field.field_name] = value
- else:
- try:
- attribute = field.get_attribute(instance)
- except SkipField:
- continue
- check_for_none = attribute.pk if isinstance(attribute, PKOnlyObject) else attribute
- if check_for_none is None:
- ret[field.field_name] = None
- else:
- ret[field.field_name] = field.to_representation(attribute)
- return ret
复制代码 如果其他类中也需要使用该重写方法,可将该重新方法封装成类,其他类中继续该类后,即可不消每次都重写to_representation方法
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!更多信息从访问主页:qidao123.com:ToB企服之家,中国第一个企服评测及商务社交产业平台。 |