接待关注我的CSDN:https://spike.blog.csdn.net/
本文地址:https://spike.blog.csdn.net/article/details/143388189
免责声明:本文来源于个人知识与公开资料,仅用于学术交换,接待讨论,不支持转载。
Grounded SAM2 集成多个先辈模型的视觉 AI 框架,融合 GroundingDINO、Florence-2 和 SAM2 等模型,实现开放域目标检测、分割和跟踪等多项视觉使命的突破性希望,通过自然语言形貌来定位图像中的目标,天生精细的目标分割掩码,在视频序列中持续跟踪目标,保持 ID 的一致性。
Paper: Grounded SAM: Assembling Open-World Models for Diverse Visual Tasks,SAM 版本由 1.0 升级至 2.0
1. 环境设置
GitHub: Grounded-SAM-2
- git clone https://github.com/IDEA-Research/Grounded-SAM-2
- cd Grounded-SAM-2
复制代码 准备 SAM 2.1 模型,格式是 pt 的,GroundingDINO 模型,格式是 pth 的,即:
- wget https://huggingface.co/facebook/sam2.1-hiera-large/resolve/main/sam2.1_hiera_large.pt?download=true -O sam2.1_hiera_large.pt
- wget https://huggingface.co/ShilongLiu/GroundingDINO/resolve/main/groundingdino_swint_ogc.pth
复制代码 最新模型位置:
- cd checkpoints
- ln -s [your path]/llm/workspace_comfyui/ComfyUI/models/sam2/sam2_hiera_large.pt sam2_hiera_large.pt
- cd gdino_checkpoints
- ln -s [your path]/llm/workspace_comfyui/ComfyUI/models/grounding-dino/groundingdino_swinb_cogcoor.pth groundingdino_swinb_cogcoor.pth
- ln -s [your path]/llm/workspace_comfyui/ComfyUI/models/grounding-dino/groundingdino_swint_ogc.pth groundingdino_swint_ogc.pth
复制代码 激活环境:
测试 PyTorch:
- import torch
- print(torch.__version__) # 2.5.0+cu124
- print(torch.cuda.is_available()) # True
- exit()
- echo $CUDA_HOME
复制代码 安装 Grounding DINO:
- pip install --no-build-isolation -e grounding_dino
- pip show groundingdino
复制代码 安装 SAM2:
- pip install --no-build-isolation -e .
- pip install --no-build-isolation -e ".[notebooks]" # 适配 Jupyter
- pip show SAM-2
复制代码 设置参数:视觉分割开源算法 SAM2(Segment Anything 2) 设置与推理
依靠文件:
- cd grounding_dino/
- pip install -r requirements.txt --verbose
复制代码 2. 测试图像
测试脚本:grounded_sam2_local_demo.py
导入相关的依靠包:
- import os
- import cv2
- import json
- import torch
- import numpy as np
- import supervision as sv
- import pycocotools.mask as mask_util
- from pathlib import Path
- from torchvision.ops import box_convert
- from sam2.build_sam import build_sam2
- from sam2.sam2_image_predictor import SAM2ImagePredictor
- from grounding_dino.groundingdino.util.inference import load_model, load_image, predict
- from PIL import Image
- import matplotlib.pyplot as plt
复制代码 设置数据,以及依靠环境,其中包罗:
- 输入文本提示,例如 袜子(socks) 和 吉他(guitar)
- 输入图像
- SAM2 模型 v2.1 版本,以及设置
- GroundingDINO (DETR with Improved deNoising anchOr boxes, 改进的去噪锚框的DETR) 模型,以及设置
- Box 阈值、文本阈值
- 输出文件夹与Json
即:
- TEXT_PROMPT = "socks. guitar."
- #IMG_PATH = "notebooks/images/truck.jpg"
- IMG_PATH = "[your path]/llm/vision_test_data/image2.png"
- image = Image.open(IMG_PATH)
- plt.figure(figsize=(9, 6))
- plt.title(f"annotated_frame")
- plt.imshow(image)
- SAM2_CHECKPOINT = "./checkpoints/sam2.1_hiera_large.pt"
- SAM2_MODEL_CONFIG = "configs/sam2.1/sam2.1_hiera_l.yaml"
- GROUNDING_DINO_CONFIG = "grounding_dino/groundingdino/config/GroundingDINO_SwinT_OGC.py"
- GROUNDING_DINO_CHECKPOINT = "gdino_checkpoints/groundingdino_swint_ogc.pth"
- BOX_THRESHOLD = 0.35
- TEXT_THRESHOLD = 0.25
- DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
- OUTPUT_DIR = Path("outputs/grounded_sam2_local_demo")
- DUMP_JSON_RESULTS = True
- # create output directory
- OUTPUT_DIR.mkdir(parents=True, exist_ok=True)
复制代码 加载 SAM2 模型,得到 sam2_predictor,即:
- # build SAM2 image predictor
- sam2_checkpoint = SAM2_CHECKPOINT
- model_cfg = SAM2_MODEL_CONFIG
- sam2_model = build_sam2(model_cfg, sam2_checkpoint, device=DEVICE)
- sam2_predictor = SAM2ImagePredictor(sam2_model)
复制代码 加载 GroundingDINO 模型,得到 grounding_model,即:
- # build grounding dino model
- grounding_model = load_model(
- model_config_path=GROUNDING_DINO_CONFIG,
- model_checkpoint_path=GROUNDING_DINO_CHECKPOINT,
- device=DEVICE
- )
复制代码 SAM2 加载图像数据,即:
- text = TEXT_PROMPT
- img_path = IMG_PATH
- # image(原图), image_transformed(正则化图像)
- image_source, image = load_image(img_path)
- sam2_predictor.set_image(image_source)
复制代码 GroudingDINO 猜测 Bounding Box,输入模型、图像、文本、Box和Text阈值,即:
- load_image() 和 predict() 都来自于 GroundingDINO,数据和模型匹配。
- boxes, confidences, labels = predict(
- model=grounding_model,
- image=image,
- caption=text,
- box_threshold=BOX_THRESHOLD,
- text_threshold=TEXT_THRESHOLD,
- )
复制代码 适配不同 Box 的格式:
- h, w, _ = image_source.shape
- boxes = boxes * torch.Tensor([w, h, w, h])
- input_boxes = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xyxy").numpy()
复制代码 SAM2 依靠的 PyTorch 设置:
- # FIXME: figure how does this influence the G-DINO model
- torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
- if torch.cuda.get_device_properties(0).major >= 8:
- # turn on tfloat32 for Ampere GPUs (https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices)
- torch.backends.cuda.matmul.allow_tf32 = True
- torch.backends.cudnn.allow_tf32 = True
复制代码 SAM2 猜测图像:
- masks, scores, logits = sam2_predictor.predict(
- point_coords=None,
- point_labels=None,
- box=input_boxes,
- multimask_output=False,
- )
复制代码 后处理惩罚猜测结果:
- """
- Post-process the output of the model to get the masks, scores, and logits for visualization
- """
- # convert the shape to (n, H, W)
- if masks.ndim == 4:
- masks = masks.squeeze(1)
- confidences = confidences.numpy().tolist()
- class_names = labels
- class_ids = np.array(list(range(len(class_names))))
- labels = [
- f"{class_name} {confidence:.2f}"
- for class_name, confidence
- in zip(class_names, confidences)
- ]
复制代码 输出结果可视化:
- """
- Visualize image with supervision useful API
- """
- img = cv2.imread(img_path)
- detections = sv.Detections(
- xyxy=input_boxes, # (n, 4)
- mask=masks.astype(bool), # (n, h, w)
- class_id=class_ids
- )
- box_annotator = sv.BoxAnnotator()
- annotated_frame = box_annotator.annotate(scene=img.copy(), detections=detections)
- label_annotator = sv.LabelAnnotator()
- annotated_frame = label_annotator.annotate(scene=annotated_frame, detections=detections, labels=labels)
- cv2.imwrite(os.path.join(OUTPUT_DIR, "groundingdino_annotated_image.jpg"), annotated_frame)
- plt.figure(figsize=(9, 6))
- plt.title(f"annotated_frame")
- plt.imshow(annotated_frame[:,:,::-1])
- mask_annotator = sv.MaskAnnotator()
- annotated_frame = mask_annotator.annotate(scene=annotated_frame, detections=detections)
- cv2.imwrite(os.path.join(OUTPUT_DIR, "grounded_sam2_annotated_image_with_mask.jpg"), annotated_frame)
- plt.figure(figsize=(9, 6))
- plt.title(f"annotated_frame")
- plt.imshow(annotated_frame[:,:,::-1])
复制代码 GroundingDINO 的 Box 效果,准确检测出 袜子 和 吉他,两类实体:
SAM2 的分割效果,如下:
转换成 COCO 数据格式:
- def single_mask_to_rle(mask):
- rle = mask_util.encode(np.array(mask[:, :, None], order="F", dtype="uint8"))[0]
- rle["counts"] = rle["counts"].decode("utf-8")
- return rle
- if DUMP_JSON_RESULTS:
- # convert mask into rle format
- mask_rles = [single_mask_to_rle(mask) for mask in masks]
- input_boxes = input_boxes.tolist()
- scores = scores.tolist()
- # save the results in standard format
- results = {
- "image_path": img_path,
- "annotations" : [
- {
- "class_name": class_name,
- "bbox": box,
- "segmentation": mask_rle,
- "score": score,
- }
- for class_name, box, mask_rle, score in zip(class_names, input_boxes, mask_rles, scores)
- ],
- "box_format": "xyxy",
- "img_width": w,
- "img_height": h,
- }
-
- with open(os.path.join(OUTPUT_DIR, "grounded_sam2_local_image_demo_results.json"), "w") as f:
- json.dump(results, f, indent=4)
复制代码 免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!更多信息从访问主页:qidao123.com:ToB企服之家,中国第一个企服评测及商务社交产业平台。 |