UNet2DConditionModel总体布局
图片来自于 https://zhuanlan.zhihu.com/p/635204519
stable diffusion 运行unet部分的代码。
- noise_pred = self.unet(
- sample=latent_model_input, #(2,4,64,64) 生成的latent
- timestep=t, #时刻t
- encoder_hidden_states=prompt_embeds, #(2,77,768) #输入的prompt和negative prompt 生成的embedding
- timestep_cond=timestep_cond,#默认空
- cross_attention_kwargs=self.cross_attention_kwargs, #默认空
- added_cond_kwargs=added_cond_kwargs, #默认空
- return_dict=False,
- )[0]
复制代码 1.time
get_time_embed使用了sinusoidal timestep embeddings,
time_embedding 使用了两个线性层和激活层举行映射,将320转换到1280。
如果还有class_labels,added_cond_kwargs等参数,也转换为embedding,并且相加。
- t_emb = self.get_time_embed(sample=sample, timestep=timestep) #(2,320)
- emb = self.time_embedding(t_emb, timestep_cond) #(2,1280)
复制代码 2.pre-process
卷积转换,输入latent从(2,4,64,64) 到(2,320,64,64)
- sample = self.conv_in(sample) #(2,320,64,64)
- self.conv_in = nn.Conv2d(
- in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
- )
复制代码 3.down
down_block 由三个CrossAttnDownBlock2D和一个DownBlock2D组成。输入包罗:
- hidden_states:latent
- temb:时刻t的embdedding
- encoder_hidden_states:prompt和negative prompt的embedding
网络布局
- CrossAttnDownBlock2D(
- ResnetBlock2D()
- Transformer2DModel()
- ResnetBlock2D()
- Transformer2DModel()
- Downsample2D() #(2,320,32,32)
- )
- CrossAttnDownBlock2D(
- ResnetBlock2D()
- Transformer2DModel()
- ResnetBlock2D()
- Transformer2DModel()
- Downsample2D() #(2,640,16,16)
- )
- CrossAttnDownBlock2D(
- ResnetBlock2D()
- Transformer2DModel()
- ResnetBlock2D()
- Transformer2DModel()
- Downsample2D() #(2,1280,8,8)
- )
- DownBlock2D(
- ResnetBlock2D()
- ResnetBlock2D() #(2,1280,8,8)
- )
复制代码 4.mid
UNetMidBlock2DCrossAttn 包含 resnet,attn,resnet三个模块,输入输出维度稳固。输入包罗:
- hidden_states:latent
- temb,时刻t的embdedding
- encoder_hidden_states:prompt和negative prompt的embedding
- UNetMidBlock2DCrossAttn(
- ResnetBlock2D()
- Transformer2DModel()
- ResnetBlock2D()
- )
复制代码 5.up
up由一个UpBlock2D和三个CrossAttnUpBlock2D组成,输入包罗:
- hidden_states:latent
- temb: 时刻t的embdedding
- encoder_hidden_states:prompt和negative prompt的embedding
- res_hidden_states_tupleL:下采样时每个block的效果,skip connection。
- UpBlock2D(
- ResnetBlock2D()
- ResnetBlock2D()
- ResnetBlock2D()
- Upsample2D() #(2,1280,16,16)
- )
- CrossAttnUpBlock2D(
- ResnetBlock2D()
- Transformer2DModel()
- ResnetBlock2D()
- Transformer2DModel()
- ResnetBlock2D()
- Transformer2DModel()
- Downsample2D() #(2,1280,32,32)
- )
- CrossAttnUpBlock2D(
- ResnetBlock2D()
- Transformer2DModel()
- ResnetBlock2D()
- Transformer2DModel()
- ResnetBlock2D()
- Transformer2DModel()
- Downsample2D() #(2,640,64,64)
- )
- CrossAttnUpBlock2D(
- ResnetBlock2D() #(2,320,64,64)
- Transformer2DModel()
- ResnetBlock2D()
- Transformer2DModel()
- ResnetBlock2D()
- Transformer2DModel()
- )
复制代码 6.post-process
卷积变动通道数,得到最终效果
- if self.conv_norm_out:
- sample = self.conv_norm_out(sample)
- sample = self.conv_act(sample)
- sample = self.conv_out(sample) #(2,4,64,64)
复制代码 时刻t,种别class等参数作用在resnet部分,都是和输入直接相加。
由prompt,negative prompt 盘算得到的encoder_hidden_states,作用在attention部分,作为key和value,参与盘算。
ResnetBlock2D
x在标准化、激活、卷积之后,和temb相加,再次标准化、激活、卷积之后作为残差,与x相加。
- hidden_states = input_tensor
- hidden_states = self.norm1(hidden_states)
- hidden_states = self.nonlinearity(hidden_states) #激活函数
- hidden_states = self.conv1(hidden_states)
- if self.time_emb_proj is not None:
- if not self.skip_time_act:
- temb = self.nonlinearity(temb)
- temb = self.time_emb_proj(temb)[:, :, None, None] #(2,320,1,1)
- if self.time_embedding_norm == "default":
- if temb is not None:
- hidden_states = hidden_states + temb #与temb相加
- hidden_states = self.norm2(hidden_states)
- hidden_states = self.nonlinearity(hidden_states)
- hidden_states = self.dropout(hidden_states)
- hidden_states = self.conv2(hidden_states)
- output_tensor = (input_tensor + hidden_states) / self.output_scale_factor
- return output_tensor
复制代码 Transformer2DModel attentions部分
每个attention 包罗 Self-Attention 和Cross-Attention两部分。
- #Self-Attention ,encoder_hidden_states=None
- attn_output = self.attn1(
- norm_hidden_states,
- encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
- attention_mask=attention_mask,
- **cross_attention_kwargs,
- )
- #Cross-Attention,encoder_hidden_states由prompt计算得来,在这里和latent交互。
- attn_output = self.attn2(
- norm_hidden_states,
- encoder_hidden_states=encoder_hidden_states,
- attention_mask=encoder_attention_mask,
- **cross_attention_kwargs,
- )
- #query由norm_hidden_states计算而来,
- #key、value由encoder_hidden_states计算而来。
- query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) #(2,8,4096,40)
- key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) #(2,8,77,40)
- value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) #(2,8,77,40)
- hidden_states = F.scaled_dot_product_attention(
- query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False #(2,8,4096,40)
- )
复制代码 参考:stable diffusion 中使用的 UNet 2D Condition Model 布局解析(diffusers库)
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!更多信息从访问主页:qidao123.com:ToB企服之家,中国第一个企服评测及商务社交产业平台。 |