马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?立即注册
x
在 Hugging Face 的 transformers 库中,GPT(Generative Pre-trained Transformer)类的模型有两个常用的生成文本的方法:generate 和 chat。这两个方法在使用上有一些区别。通常公司发布的 LLM 模型会有一个基础版本,还会有一个 Chat 版本。比如,Qwen-7B(基础版本)和 Qwen-7B-Chat(Chat 版本)。
1. generate 方法
- generate 方法是模型的原生方法,用于生成文本。
- 通常用于批量生成文本数据,可以根据特定的输入和条件生成一组文本。
- 使用时必要通报一些参数,如 max_length(生成文本的最大长度)、num_beams(束搜索的数量,用于增强生成的多样性)等。
- from transformers import GPT2LMHeadModel, GPT2Tokenizer
- model_name = "gpt2"
- model = GPT2LMHeadModel.from_pretrained(model_name)
- tokenizer = GPT2Tokenizer.from_pretrained(model_name)
- input_text = "Once upon a time,"
- generated_text = model.generate(tokenizer.encode(input_text, return_tensors="pt"), max_length=50, num_beams=5)[0]
- print(tokenizer.decode(generated_text, skip_special_tokens=True))
复制代码 2. chat 方法
- chat 方法是一个高级的便捷方法,通常用于模仿对话。
- 提供了更简单的用户交互方式,以模仿对话流程,尤其在聊天式应用中更为方便。
- 它内部调用了 generate 方法,但提供了更加简化的输入输出接口。
- from transformers import GPT2LMHeadModel, GPT2Tokenizer
- model_name = "gpt2"
- model = GPT2LMHeadModel.from_pretrained(model_name)
- tokenizer = GPT2Tokenizer.from_pretrained(model_name)
- chat_history = [
- {'role':'system', 'content':'You are a helpful assistant.'},
- {'role':'user', 'content':'Who won the world series in 2020?'},
- {'role':'assistant', 'content':'The Los Angeles Dodgers won the World Series in 2020.'},
- ]
- user_input = "Who won the Super Bowl in 2021?"
- chat_history.append({'role':'user', 'content':user_input})
- # 使用 chat 方法进行对话
- response = model.chat(chat_history)
- print(response)
复制代码 总体来说,generate 方法更加灵活,实用于更多的生成使命,而 chat 方法则提供了更高级别、更易于使用的接口,实用于聊天式应用中。选择使用哪个方法通常取决于你的具体需求和使用场景。
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!更多信息从访问主页:qidao123.com:ToB企服之家,中国第一个企服评测及商务社交产业平台。 |