【Flink系列】4. Flink运行时架构

打印 上一主题 下一主题

主题 848|帖子 848|积分 2544

4. Flink运行时架构

4.1 体系架构

Flink运行时架构——Standalone会话模式为例

1)作业管理器(JobManager)

JobManager是一个Flink集群中任务管理和调度的核心,是控制应用执行的主历程。也就是说,每个应用都应该被唯一的JobManager所控制执行。
JobManger又包罗3个不同的组件。
(1)JobMaster

JobMaster是JobManager中最核心的组件,负责处理惩罚单独的作业(Job)。以是JobMaster和具体的Job是一一对应的,多个Job可以同时运行在一个Flink集群中, 每个Job都有一个本身的JobMaster。必要注意在早期版本的Flink中,没有JobMaster的概念;而JobManager的概念范围较小,实际指的就是现在所说的JobMaster。
在作业提交时,JobMaster会先接收到要执行的应用。JobMaster会把JobGraph转换成一个物理层面的数据流图,这个图被叫作“执行图”(ExecutionGraph),它包罗了全部可以并发执行的任务。JobMaster会向资源管理器(ResourceManager)发出请求,申请执行任务必要的资源。一旦它获取到了足够的资源,就会将执行图分发到真正运行它们的TaskManager上。
而在运行过程中,JobMaster会负责全部必要中央和谐的利用,比如说查抄点(checkpoints)的和谐。
(2)资源管理器(ResourceManager)

ResourceManager紧张负责资源的分配和管理,在Flink 集群中只有一个。所谓“资源”,紧张是指TaskManager的任务槽(task slots)。任务槽就是Flink集群中的资源调配单位,包罗了机器用来执行计算的一组CPU和内存资源。每一个任务(Task)都必要分配到一个slot上执行。
这里注意要把Flink内置的ResourceManager和其他资源管理平台(比如YARN)的ResourceManager区分开。
(3)分发器(Dispatcher)

Dispatcher紧张负责提供一个REST接口,用来提交应用,而且负责为每一个新提交的作业启动一个新的JobMaster 组件。Dispatcher也会启动一个Web UI,用来方便地展示和监控作业执行的信息。Dispatcher在架构中并不是必须的,在不同的部署模式下大概会被忽略掉。
2)任务管理器(TaskManager)

TaskManager是Flink中的工作历程,数据流的具体计算就是它来做的。Flink集群中必须至少有一个TaskManager;每一个TaskManager都包罗了一定命量的任务槽(task slots)。Slot是资源调度的最小单位,slot的数目限定了TaskManager可以或许并行处理惩罚的任务数目。
启动之后,TaskManager会向资源管理器注册它的slots;收到资源管理器的指令后,TaskManager就会将一个或者多个槽位提供给JobMaster调用,JobMaster就可以分配任务来执行了。
在执行过程中,TaskManager可以缓冲数据,还可以跟其他运行同一应用的TaskManager交换数据。
4.2 核心概念

4.2.1 并行度(Parallelism)

1)并行子任务和并行度

当要处理惩罚的数据量非常大时,我们可以把一个算子利用,“复制”多份到多个节点,数据来了之后就可以到其中任意一个执行。这样一来,一个算子任务就被拆分成了多个并行的“子任务”(subtasks),再将它们分发到不同节点,就真正实现了并行计算。
在Flink执行过程中,每一个算子(operator)可以包罗一个或多个子任务(operator subtask),这些子任务在不同的线程、不同的物理机或不同的容器中完全独立地执行。

一个特定算子的子任务(subtask)的个数被称之为其并行度(parallelism)。这样,包罗并行子任务的数据流,就是并行数据流,它必要多个分区(stream partition)来分配并行任务。一样寻常情况下,一个流步伐的并行度,可以以为就是其全部算子中最大的并行度。一个步伐中,不同的算子大概具有不同的并行度。
例如:如上图所示,当前数据流中有source、map、window、sink四个算子,其中sink算子的并行度为1,其他算子的并行度都为2。以是这段流处理惩罚步伐的并行度就是2。
2)并行度的设置

在Flink中,可以用不同的方法来设置并行度,它们的有用范围和优先级别也是不同的。
(1)代码中设置

我们在代码中,可以很简朴地在算子后跟着调用setParallelism()方法,来设置当前算子的并行度:
  1. stream.map(word -> Tuple2.of(word, 1L)).setParallelism(2);
复制代码
这种方式设置的并行度,只针对当前算子有用。
另外,我们也可以直接调用执行情况的setParallelism()方法,全局设定并行度:
  1. env.setParallelism(2);
复制代码
这样代码中全部算子,默认的并行度就都为2了。我们一样寻常不会在步伐中设置全局并行度,因为如果在步伐中对全局并行度进行硬编码,会导致无法动态扩容。
这里要注意的是,由于keyBy不是算子,以是无法对keyBy设置并行度。
(2)提交应用时设置

在利用flink run下令提交应用时,可以增加-p参数来指定当前应用步伐执行的并行度,它的作用雷同于执行情况的全局设置:
  1. bin/flink run –p 2 –c com.atguigu.wc.SocketStreamWordCount
  2. ./FlinkTutorial-1.0-SNAPSHOT.jar
复制代码
如果我们直接在Web UI上提交作业,也可以在对应输入框中直接添加并行度。

(3)配置文件中设置

我们还可以直接在集群的配置文件flink-conf.yaml中直接更改默认并行度:
  1. parallelism.default: 2
复制代码
这个设置对于整个集群上提交的全部作业有用,初始值为1。无论在代码中设置、还是提交时的-p参数,都不是必须的;以是在没有指定并行度的时间,就会接纳配置文件中的集群默认并行度。在开发情况中,没有配置文件,默认并行度就是当前机器的CPU核心数。
4.2.2 算子链(Operator Chain)

1)算子间的数据传输


一个数据流在算子之间传输数据的情势可以是一对一(one-to-one)的直通(forwarding)模式,也可以是打乱的重分区(redistributing)模式,具体是哪一种情势,取决于算子的种类。
(1)一对一(One-to-one,forwarding)

这种模式下,数据流维护着分区以及元素的次序。比如图中的source和map算子,source算子读取数据之后,可以直接发送给map算子做处理惩罚,它们之间不必要重新分区,也不必要调整数据的次序。这就意味着map 算子的子任务,看到的元素个数和次序跟source 算子的子任务产生的完全一样,包管着“一对一”的关系。map、filter、flatMap等算子都是这种one-to-one的对应关系。这种关系雷同于Spark中的窄依靠。
(2)重分区(Redistributing)

在这种模式下,数据流的分区会发生改变。比如图中的map和后面的keyBy/window算子之间,以及keyBy/window算子和Sink算子之间,都是这样的关系。
每一个算子的子任务,会根据数据传输的策略,把数据发送到不同的鄙俚目的任务。这些传输方式都会引起重分区的过程,这一过程雷同于Spark中的shuffle。
2)归并算子链

在Flink中,并行度雷同的一对一(one to one)算子利用,可以直接链接在一起形成一个“大”的任务(task),这样原来的算子就成为了真正任务里的一部分,如下图所示。每个task会被一个线程执行。这样的技术被称为“算子链”(Operator Chain)。

上图中Source和map之间满足了算子链的要求,以是可以直接归并在一起,形成了一个任务;因为并行度为2,以是归并后的任务也有两个并行子任务。这样,这个数据流图所表示的作业最终会有5个任务,由5个线程并行执行。
将算子链接成task是非常有用的优化:可以减少线程之间的切换和基于缓存区的数据交换,在减少时延的同时提升吞吐量。
Flink默认会按照算子链的原则进行链接归并,如果我们想要克制归并或者自行界说,也可以在代码中对算子做一些特定的设置:
  1. // 禁用算子链
  2. .map(word -> Tuple2.of(word, 1L)).disableChaining();
  3. // 从当前算子开始新链
  4. .map(word -> Tuple2.of(word, 1L)).startNewChain()
复制代码
4.2.3 任务槽(Task Slots)

1)任务槽(Task Slots)

Flink中每一个TaskManager都是一个JVM历程,它可以启动多个独立的线程,来并行执行多个子任务(subtask)。
很显然,TaskManager的计算资源是有限的,并行的任务越多,每个线程的资源就会越少。那一个TaskManager到底能并行处理惩罚多少个任务呢?为了控制并发量,我们必要在TaskManager上对每个任务运行所占用的资源做出明白的分别,这就是所谓的任务槽(task slots)。
每个任务槽(task slot)其实表示了TaskManager拥有计算资源的一个固定巨细的子集。这些资源就是用来独立执行一个子任务的。

2)任务槽数目的设置

在Flink的/opt/module/flink-1.17.0/conf/flink-conf.yaml配置文件中,可以设置TaskManager的slot数目,默认是1个slot。
  1. taskmanager.numberOfTaskSlots: 8
复制代码
必要注意的是,slot目前仅仅用来隔离内存,不会涉及CPU的隔离。在具体应用时,可以将slot数目配置为机器的CPU核心数,只管避免不同任务之间对CPU的竞争。这也是开发情况默认并行度设为机器CPU数目的原因。
3)任务对任务槽的共享


默认情况下,Flink是允许子任务共享slot的。如果我们保持sink任务并行度为1不变,而作业提交时设置全局并行度为6,那么前两个任务节点就会各自有6个并行子任务,整个流处理惩罚步伐则有13个子任务。如上图所示,只要属于同一个作业,那么对于不同任务节点(算子)的并行子任务,就可以放到同一个slot上执行。以是对于第一个任务节点source→map,它的6个并行子任务必须分到不同的slot上,而第二个任务节点keyBy/window/apply的并行子任务却可以和第一个任务节点共享slot。
当我们将资源麋集型和非麋集型的任务同时放到一个slot中,它们就可以自行分配对资源占用的比例,从而包管最重的活均匀分配给全部的TaskManager。
slot共享另一个利益就是允许我们生存完整的作业管道。这样一来,纵然某个TaskManager出现故障宕机,其他节点也可以完全不受影响,作业的任务可以继续执行。
当然,Flink默认是允许slot共享的,如果希望某个算子对应的任务完全独占一个slot,或者只有某一部分算子共享slot,我们也可以通过设置“slot共享组”手动指定:
  1. .map(word -> Tuple2.of(word, 1L)).slotSharingGroup("1");
复制代码
这样,只有属于同一个slot共享组的子任务,才会开启slot共享;不同组之间的任务是完全隔离的,必须分配到不同的slot上。在这种场景下,总共必要的slot数目,就是各个slot共享组最大并行度的总和。
4.2.4 任务槽和并行度的关系
任务槽和并行度都跟步伐的并行执行有关,但两者是完全不同的概念。简朴来说任务槽是静态的概念,是指TaskManager具有的并发执行本事,可以通过参数taskmanager.numberOfTaskSlots进行配置;而并行度是动态概念,也就是TaskManager运行步伐时实际利用的并发本事,可以通过参数parallelism.default进行配置。
举例分析:假设一共有3个TaskManager,每一个TaskManager中的slot数目设置为3个,那么一共有9个task slot,表示集群最多能并行执行9个同一算子的子任务。
而我们界说word count步伐的处理惩罚利用是四个转换算子:
source→ flatmap→ reduce→ sink
当全部算子并行度雷同时,容易看出source和flatmap可以归并算子链,于是最终有三个任务节点。



通过这个例子也可以明白地看到,整个流处理惩罚步伐的并行度,就应该是全部算子并行度中最大的谁人,这代表了运行步伐必要的slot数目。
4.3 作业提交换程

4.3.1 Standalone会话模式作业提交换程


4.3.2 逻辑流图/作业图/执行图/物理流图

我们已经彻底了解了由代码天生任务的过程,现在来做个梳理总结。
逻辑流图(StreamGraph)→ 作业图(JobGraph)→ 执行图(ExecutionGraph)→ 物理图(Physical Graph)。

1)逻辑流图(StreamGraph)

这是根据用户通过 DataStream API编写的代码天生的最初的DAG图,用来表示步伐的拓扑布局。这一步一样寻常在客户端完成。
2)作业图(JobGraph)

StreamGraph经过优化后天生的就是作业图(JobGraph),这是提交给 JobManager 的数据布局,确定了当前作业中全部任务的分别。紧张的优化为:将多个符合条件的节点链接在一起归并成一个任务节点,形成算子链,这样可以减少数据交换的消耗。JobGraph一样寻常也是在客户端天生的,在作业提交时传递给JobMaster。
我们提交作业之后,打开Flink自带的Web UI,点击作业就能看到对应的作业图。

3)执行图(ExecutionGraph)

JobMaster收到JobGraph后,会根据它来天生执行图(ExecutionGraph)。ExecutionGraph是JobGraph的并行化版本,是调度层最核心的数据布局。与JobGraph最大的区别就是按照并行度对并行子任务进行了拆分,并明白了任务间数据传输的方式。
4)物理图(Physical Graph)

JobMaster天生执行图后,会将它分发给TaskManager;各个TaskManager会根据执行图部署任务,最终的物理执行过程也会形成一张“图”,一样寻常就叫作物理图(Physical Graph)。这只是具体执行层面的图,并不是一个具体的数据布局。
物理图紧张就是在执行图的基础上,进一步确定命据存放的位置和收发的具体方式。有了物理图,TaskManager就可以对传递来的数据进行处理惩罚计算了。
4.3.3 Yarn应用模式作业提交换程



免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!更多信息从访问主页:qidao123.com:ToB企服之家,中国第一个企服评测及商务社交产业平台。

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有账号?立即注册

x
回复

使用道具 举报

0 个回复

倒序浏览

快速回复

您需要登录后才可以回帖 登录 or 立即注册

本版积分规则

嚴華

金牌会员
这个人很懒什么都没写!

标签云

快速回复 返回顶部 返回列表