原文地址: https://blog.fanscore.cn/a/51/
背景
最近接到一个需求,开发中使用了redis georadius命令取附近给定距离内的点。完工后对服务进行压测后发现georadius的性能比预期要差,因此我分析了georadius的源码,并对原始的实现方案进行了优化,总结成了本文。
我们生产环境使用的redis版本为4.0.13,因此本文redis源码皆为4.0.13版本的源码
redis geo原理
往redis中添加坐标的命令是GEOADD key longitude latitude member [longitude latitude member ...],实际上redis会将经纬度转成一个52bit的整数作为zset的score,然后添加到zset中,所以实际上redis geo底层就是个zset,你甚至可以直接使用zset的命令来操作一个geo类型的key。
那么经纬度是如何转成52bit整数的呢?业内广泛使用的方法是首先对经纬度分别按照二分法编码,然后将各自的编码交叉组合成最后的编码。我们以116.505021, 39.950898这个坐标为例看下如何编码:
- 第一次二分操作,把经度分为两个区间:[-180,0)和[0,180],116.505021落在右区间,因此用1表示第一次编码后的值
- 第二次二分操作,把[0,180]分为两个区间[0,90)和[90,180],116.505021落在右区间,因此用1表示第二次编码后的值
- 第三次二分操作,把[90,180]分为两个区间[90,135)和[135,180],116.505021落在左区间,因此用0表示第二次编码后的值
- 按照这种方法依次处理,做完5次后,得到经度值的5位编码值:11010
分区次数左区间右区间经度116.505021在区间编码值1[-180, 0)[0, 180][0, 180]12[0, 90)[90, 180][90, 180]13[90, 135)[135, 180][90, 135])04[90, 112.5)[112.5, 135][112.5, 135]15[112.5, 123.75)[123.75, 180][112.5, 123.75]0
- 按照同样的方法对纬度值进行编码,得到纬度值的5位编码值:10111
分区次数左区间右区间纬度39.950898在区间编码值1[-90, 0)[0, 90][0, 90]12[0, 45)[45, 90][0, 45]03[0, 22.5)[22.5, 45][22.5, 45])14[22.5, 33.75)[33.75, 45][33.75, 45]15[33.75, 39.375)[39.375, 45][39.375, 45]1然后将经度编码11010和纬度编码值10111交叉得到最终geohash值1110011101

通常会使用base32将编码值转成字符串表示的hash值,与本文无关这里不多做介绍
根据如上的算法通常可以直观的写出如下的代码:- // 该代码来源于https://github.com/HDT3213/godis/blob/master/lib/geohash/geohash.go
- func encode0(latitude, longitude float64, bitSize uint) ([]byte, [2][2]float64) {
- box := [2][2]float64{
- {-180, 180}, // lng
- {-90, 90}, // lat
- }
- pos := [2]float64{longitude, latitude}
- hash := &bytes.Buffer{}
- bit := 0
- var precision uint = 0
- code := uint8(0)
- for precision < bitSize {
- for direction, val := range pos {
- mid := (box[direction][0] + box[direction][1]) / 2
- if val < mid {
- box[direction][1] = mid
- } else {
- box[direction][0] = mid
- code |= bits[bit]
- }
- bit++
- if bit == 8 {
- hash.WriteByte(code)
- bit = 0
- code = 0
- }
- precision++
- if precision == bitSize {
- break
- }
- }
- }
- if code > 0 {
- hash.WriteByte(code)
- }
- return hash.Bytes(), box
- }
复制代码 可以看到基本就是上述算法的实际描述,但是redis源码中却是另外一种算法:- int geohashEncode(const GeoHashRange *long_range, const GeoHashRange *lat_range,
- double longitude, double latitude, uint8_t step,
- GeoHashBits *hash) {
- // 参数检查此处代码省略
- ...
-
- double lat_offset =
- (latitude - lat_range->min) / (lat_range->max - lat_range->min);
- double long_offset =
- (longitude - long_range->min) / (long_range->max - long_range->min);
- lat_offset *= (1 << step);
- long_offset *= (1 << step);
- // lat_offset与long_offset交叉
- hash->bits = interleave64(lat_offset, long_offset);
- return 1;
- }
复制代码 调用encode0函数就能计算出给定点在step = geohashEstimateStepsByRadius()精度级别所在矩形区域的geohash值。接下来计算该矩形区域附近的八个区域。- const double MERCATOR_MAX = 20037726.37;
- uint8_t geohashEstimateStepsByRadius(double range_meters, double lat) {
- if (range_meters == 0) return 26;
- int step = 1;
- while (range_meters < MERCATOR_MAX) {
- range_meters *= 2;
- step++;
- }
- step -= 2;
- // 高纬度地区地球半径小因此适当降低精度
- if (lat > 66 || lat < -66) {
- step--;
- if (lat > 80 || lat < -80) step--;
- }
- if (step < 1) step = 1;
- if (step > 26) step = 26;
- return step;
- }
复制代码 一个区域的东侧区域只要将经度的编码值+1即可,反之西侧区域只要将经度编码值-1即可,北侧区域只要将纬度的编码值+1即可,南侧区域只要将纬度的编码值-1即可。对应redis源码如下:- ...
- // 调用encode0函数计算geohash
- geohashEncode(&long_range,&lat_range,longitude,latitude,steps,&hash);
- // 计算出附近八个区域
- geohashNeighbors(&hash,&neighbors);
- ...
复制代码
如上图所示,当给定点在中心区域的东北侧时,西北、西、西南、南、东南五个方向的区域中的所有点距离给定点肯定超过了给定距离,所以可以过滤掉,redis代码如下所示:- void geohashNeighbors(const GeoHashBits *hash, GeoHashNeighbors *neighbors) {
- neighbors->east = *hash;
- neighbors->west = *hash;
- neighbors->north = *hash;
- neighbors->south = *hash;
- neighbors->south_east = *hash;
- neighbors->south_west = *hash;
- neighbors->north_east = *hash;
- neighbors->north_west = *hash;
- // 纬度加1就是东侧区域
- geohash_move_x(&neighbors->east, 1);
- geohash_move_y(&neighbors->east, 0);
- // 纬度减1就是西侧区域
- geohash_move_x(&neighbors->west, -1);
- geohash_move_y(&neighbors->west, 0);
- // 精度减1就是南侧区域
- geohash_move_x(&neighbors->south, 0);
- geohash_move_y(&neighbors->south, -1);
- geohash_move_x(&neighbors->north, 0);
- geohash_move_y(&neighbors->north, 1);
- geohash_move_x(&neighbors->north_west, -1);
- geohash_move_y(&neighbors->north_west, 1);
- geohash_move_x(&neighbors->north_east, 1);
- geohash_move_y(&neighbors->north_east, 1);
- geohash_move_x(&neighbors->south_east, 1);
- geohash_move_y(&neighbors->south_east, -1);
- geohash_move_x(&neighbors->south_west, -1);
- geohash_move_y(&neighbors->south_west, -1);
- }
复制代码 计算出区块后下一步就需要将九宫格区域中的所有坐标点拿出来,依次计算与给定点的距离,然后过滤出符合给定距离的点- if (steps >= 2) {
- if (area.latitude.min < min_lat) {
- GZERO(neighbors.south); // 南侧区域置零,过滤南侧区域
- GZERO(neighbors.south_west);
- GZERO(neighbors.south_east);
- }
- if (area.latitude.max > max_lat) {
- GZERO(neighbors.north);
- GZERO(neighbors.north_east);
- GZERO(neighbors.north_west);
- }
- if (area.longitude.min < min_lon) {
- GZERO(neighbors.west);
- GZERO(neighbors.south_west);
- GZERO(neighbors.north_west);
- }
- if (area.longitude.max > max_lon) {
- GZERO(neighbors.east);
- GZERO(neighbors.south_east);
- GZERO(neighbors.north_east);
- }
- }
复制代码 georadius优化
从上一节中可以看到,给定距离范围越大,则九宫格区域越大,九宫格区域内的点就越多,而每个点都需要计算与中间点的距离,距离计算又涉及到大量的三角函数计算,所以这部分计算是十分消耗CPU的。又因为redis工作线程是单线程的,因此无法充分利用多核,无法通过增加redis server的CPU核数来提升性能,只能添加从库。
距离计算算法及优化可以看下美团的这篇文章: https://tech.meituan.com/2014/09/05/lucene-distance.html
对于这个问题,我们可以将九宫格以及距离计算部分提升到我们的应用程序即redis客户端来进行,步骤如下:
- 在客户端计算出九宫格区域,然后转为zset score的范围
- 使用zrangebyscore命令从redis取出score范围内的所有点
- 遍历所有点依次计算与给定点的距离,筛选出符合距离条件的点
陌陌好像也是使用了这种方案:https://mp.weixin.qq.com/s/DL2P49y4R1AE2MIdkxkZtQ
由于我们使用golang进行开发,因此我将redis中的georadius部分代码转为了golang代码,并整理成一个库开源在了github:https://github.com/Orlion/go-georadius
原本的写法是:- // 遍历九宫格内所有点,依次计算与给定点的距离,然后过滤出符合给定距离的点添加到ga中
- int membersOfAllNeighbors(robj *zobj, GeoHashRadius n, double lon, double lat, double radius, geoArray *ga) {
- GeoHashBits neighbors[9];
- unsigned int i, count = 0, last_processed = 0;
- int debugmsg = 1;
- neighbors[0] = n.hash;
- neighbors[1] = n.neighbors.north;
- neighbors[2] = n.neighbors.south;
- neighbors[3] = n.neighbors.east;
- neighbors[4] = n.neighbors.west;
- neighbors[5] = n.neighbors.north_east;
- neighbors[6] = n.neighbors.north_west;
- neighbors[7] = n.neighbors.south_east;
- neighbors[8] = n.neighbors.south_west;
- // 遍历九宫格
- for (i = 0; i < sizeof(neighbors) / sizeof(*neighbors); i++) {
- ...
- // 当给定距离过大时,区块可能会重复
- if (last_processed &&
- neighbors[i].bits == neighbors[last_processed].bits &&
- neighbors[i].step == neighbors[last_processed].step)
- {
- continue;
- }
- // 取出宫格内所有点,依次计算距离,符合条件后添加到ga中
- count += membersOfGeoHashBox(zobj, neighbors[i], ga, lon, lat, radius);
- last_processed = i;
- }
- return count;
- }
- int membersOfGeoHashBox(robj *zobj, GeoHashBits hash, geoArray *ga, double lon, double lat, double radius) {
- GeoHashFix52Bits min, max;
- // 根据区块的geohash值计算出对应的zset的score的上下限[min,max]
- scoresOfGeoHashBox(hash,&min,&max);
- // 取出底层的zset中的[min,max]范围内的元素,依次计算距离,符合条件后添加到ga中
- return geoGetPointsInRange(zobj, min, max, lon, lat, radius, ga);
- }
复制代码 改造后:- client.GeoRadius(key, longitude, latitude, &redis.GeoRadiusQuery{
- Radius: 1000,
- Unit: "m", // 距离单位
- Count: 1, // 返回1条
- WithCoord: true, // 将位置元素的经纬度一并返回
- WithDist: true, // 一并返回距离
- })
复制代码 压测结果对比
43w坐标点,取附近50km(九宫格内有14774点,符合条件的点约6000个)
50km优化前
- ga := make([]redis.Z, 0)
- ranges := geo.NeighborRanges(longitude, latitude, 1000)
- for _, v := range ranges {
- zs, _ := client.ZRangeByScoreWithScores(key, redis.ZRangeBy{
- Min: strconv.Itoa(int(v[0])),
- Max: strconv.Itoa(int(v[1])),
- }).Result()
- for _, z := range zs {
- dist := geox.GetDistanceByScore(longitude, latitude, uint64(z.Score))
- if dist < 1000 {
- ga = append(ga, z)
- }
- }
- }
复制代码 50km优化后
- Concurrency Level: 5
- Time taken for tests: 89.770 seconds
- Complete requests: 5000
- Failed requests: 0
- Write errors: 0
- Total transferred: 720000 bytes
- HTML transferred: 0 bytes
- Requests per second: 55.70 [#/sec] (mean)
- Time per request: 89.770 [ms] (mean)
- Time per request: 17.954 [ms] (mean, across all concurrent requests)
- Transfer rate: 7.83 [Kbytes/sec] received
- Connection Times (ms)
- min mean[+/-sd] median max
- Connect: 0 0 0.0 0 0
- Processing: 23 90 10.7 90 159
- Waiting: 23 89 10.7 89 159
- Total: 23 90 10.7 90 159
- Percentage of the requests served within a certain time (ms)
- 50% 90
- 66% 93
- 75% 96
- 80% 97
- 90% 102
- 95% 107
- 98% 111
- 99% 116
- 100% 159 (longest request)
复制代码 可以看到性能并没有巨大的提升,我们减小距离范围到5km(符合条件的点有130个)再看下压测结果
5km优化前
- Concurrency Level: 5
- Time taken for tests: 75.447 seconds
- Complete requests: 5000
- Failed requests: 0
- Write errors: 0
- Total transferred: 720000 bytes
- HTML transferred: 0 bytes
- Requests per second: 66.27 [#/sec] (mean)
- Time per request: 75.447 [ms] (mean)
- Time per request: 15.089 [ms] (mean, across all concurrent requests)
- Transfer rate: 9.32 [Kbytes/sec] received
- Connection Times (ms)
- min mean[+/-sd] median max
- Connect: 0 0 0.0 0 0
- Processing: 21 75 14.2 75 159
- Waiting: 21 75 14.1 75 159
- Total: 21 75 14.2 75 159
- Percentage of the requests served within a certain time (ms)
- 50% 75
- 66% 80
- 75% 84
- 80% 86
- 90% 92
- 95% 98
- 98% 104
- 99% 111
- 100% 159 (longest request)
复制代码 5km优化后
- Concurrency Level: 5
- Time taken for tests: 14.006 seconds
- Complete requests: 5000
- Failed requests: 0
- Write errors: 0
- Total transferred: 720000 bytes
- HTML transferred: 0 bytes
- Requests per second: 356.99 [#/sec] (mean)
- Time per request: 14.006 [ms] (mean)
- Time per request: 2.801 [ms] (mean, across all concurrent requests)
- Transfer rate: 50.20 [Kbytes/sec] received
- Connection Times (ms)
- min mean[+/-sd] median max
- Connect: 0 0 0.0 0 0
- Processing: 2 14 5.5 12 33
- Waiting: 2 14 5.5 12 33
- Total: 2 14 5.5 12 34
- Percentage of the requests served within a certain time (ms)
- 50% 12
- 66% 16
- 75% 19
- 80% 20
- 90% 22
- 95% 23
- 98% 27
- 99% 28
- 100% 34 (longest request)
复制代码 可以看到当优化后性能更差了

猜测造成这个结果的原因应该是附近5km九宫格内的点比较少,所以优化后实际没减少多少距离计算,但多了n(n |