121. 买卖股票的最佳机遇 - 力扣(LeetCode)
- public class Code01_Stock1 {
- public static int maxProfit(int[] prices) {
- int ans = 0;
- for (int i = 1, min = prices[0]; i < prices.length; i++) {
- // min : 0...i范围上的最小值
- min = Math.min(min, prices[i]);
- ans = Math.max(ans, prices[i] - min);
- }
- return ans;
- }
- }
复制代码 从0 - i上的最大利润:在i天的时候卖,必要0-i上的最小值;不在i上卖,则必要0 - i-1天上的最大利润,比较即可
122. 买卖股票的最佳机遇 II - 力扣(LeetCode)
- public class Code02_Stock2 {
- public static int maxProfit(int[] prices) {
- int ans = 0;
- for (int i = 1; i < prices.length; i++) {
- ans += Math.max(prices[i] - prices[i - 1], 0);
- }
- return ans;
- }
- }
复制代码 只要两天之间的差值为正数,即有利润,就购买;否则不买
123. 买卖股票的最佳机遇 III - 力扣(LeetCode)
- public class Code03_Stock3 {
- // 完全不优化枚举的方法
- // 通过不了,会超时
- public static int maxProfit1(int[] prices) {
- int n = prices.length;
- // dp1[i] : 0...i范围上发生一次交易,不要求在i的时刻卖出,最大利润是多少
- int[] dp1 = new int[n];
- for (int i = 1, min = prices[0]; i < n; i++) {
- min = Math.min(min, prices[i]);
- dp1[i] = Math.max(dp1[i - 1], prices[i] - min);
- }
- // dp2[i] : 0...i范围上发生两次交易,并且第二次交易在i时刻卖出,最大利润是多少
- int[] dp2 = new int[n];
- int ans = 0;
- for (int i = 1; i < n; i++) {
- // 第二次交易一定要在i时刻卖出
- for (int j = 0; j <= i; j++) {
- // 枚举第二次交易的买入时机j <= i
- dp2[i] = Math.max(dp2[i], dp1[j] + prices[i] - prices[j]);
- }
- ans = Math.max(ans, dp2[i]);
- }
- return ans;
- }
- // 观察出优化枚举的方法
- // 引入best数组,需要分析能力
- public static int maxProfit2(int[] prices) {
- int n = prices.length;
- // dp1[i] : 0...i范围上发生一次交易,不要求在i的时刻卖出,最大利润是多少
- int[] dp1 = new int[n];
- for (int i = 1, min = prices[0]; i < n; i++) {
- min = Math.min(min, prices[i]);
- dp1[i] = Math.max(dp1[i - 1], prices[i] - min);
- }
- // best[i] : 0...i范围上,所有的dp1[i]-prices[i],最大值是多少
- // 这是数组的设置完全是为了替代最后for循环的枚举行为
- int[] best = new int[n];
- best[0] = dp1[0] - prices[0];
- for (int i = 1; i < n; i++) {
- best[i] = Math.max(best[i - 1], dp1[i] - prices[i]);
- }
- // dp2[i] : 0...i范围上发生两次交易,并且第二次交易在i时刻卖出,最大利润是多少
- int[] dp2 = new int[n];
- int ans = 0;
- for (int i = 1; i < n; i++) {
- // 不需要枚举了
- // 因为,best[i]已经揭示了,0...i范围上,所有的dp1[i]-prices[i],最大值是多少
- dp2[i] = best[i] + prices[i];
- ans = Math.max(ans, dp2[i]);
- }
- return ans;
- }
- // 发现所有更新行为都可以放在一起
- // 并不需要写多个并列的for循环
- // 就是等义改写,不需要分析能力
- public static int maxProfit3(int[] prices) {
- int n = prices.length;
- int[] dp1 = new int[n];
- int[] best = new int[n];
- best[0] = -prices[0];
- int[] dp2 = new int[n];
- int ans = 0;
- for (int i = 1, min = prices[0]; i < n; i++) {
- min = Math.min(min, prices[i]);
- dp1[i] = Math.max(dp1[i - 1], prices[i] - min);
- best[i] = Math.max(best[i - 1], dp1[i] - prices[i]);
- dp2[i] = best[i] + prices[i];
- ans = Math.max(ans, dp2[i]);
- }
- return ans;
- }
- // 发现只需要有限几个变量滚动更新下去就可以了
- // 空间压缩的版本
- // 就是等义改写,不需要分析能力
- public static int maxProfit4(int[] prices) {
- int dp1 = 0;
- int best = -prices[0];
- int ans = 0;
- for (int i = 1, min = prices[0]; i < prices.length; i++) {
- min = Math.min(min, prices[i]);
- dp1 = Math.max(dp1, prices[i] - min);
- best = Math.max(best, dp1 - prices[i]);
- ans = Math.max(ans, best + prices[i]); // ans = Math.max(ans, dp2);
- }
- return ans;
- }
- }
复制代码
188. 买卖股票的最佳机遇 IV - 力扣(LeetCode)
- public class Code04_Stock4 {
- // 就是股票问题2
- public static int free(int[] prices) {
- int ans = 0;
- for (int i = 1; i < prices.length; i++) {
- ans += Math.max(prices[i] - prices[i - 1], 0);
- }
- return ans;
- }
- public static int maxProfit1(int k, int[] prices) {
- int n = prices.length;
- if (k >= n / 2) {
- // 这是一个剪枝
- // 如果k >= n / 2,那么代表所有上坡都可以抓到
- // 所有上坡都可以抓到 == 交易次数无限,所以回到股票问题2
- return free(prices);
- }
- int[][] dp = new int[k + 1][n];
- for (int i = 1; i <= k; i++) {
- for (int j = 1; j < n; j++) {
- dp[i][j] = dp[i][j - 1];
- for (int p = 0; p < j; p++) {
- dp[i][j] = Math.max(dp[i][j], dp[i - 1][p] + prices[j] - prices[p]);
- }
- }
- }
- return dp[k][n - 1];
- }
- public static int maxProfit2(int k, int[] prices) {
- int n = prices.length;
- if (k >= n / 2) {
- // 这是一个剪枝
- // 如果k >= n / 2,那么代表所有上坡都可以抓到
- // 所有上坡都可以抓到 == 交易次数无限,所以回到股票问题2
- return free(prices);
- }
- int[][] dp = new int[k + 1][n];
- for (int i = 1, best; i <= k; i++) {
- best = dp[i - 1][0] - prices[0];
- for (int j = 1; j < n; j++) {
- // 用best变量替代了枚举行为
- dp[i][j] = Math.max(dp[i][j - 1], best + prices[j]);
- best = Math.max(best, dp[i - 1][j] - prices[j]);
- }
- }
- return dp[k][n - 1];
- }
- // 对方法2进行空间压缩的版本
- public static int maxProfit3(int k, int[] prices) {
- int n = prices.length;
- if (k >= n / 2) {
- // 这是一个剪枝
- // 如果k >= n / 2,那么代表所有上坡都可以抓到
- // 所有上坡都可以抓到 == 交易次数无限,所以回到股票问题2
- return free(prices);
- }
- int[] dp = new int[n];
- for (int i = 1, best, tmp; i <= k; i++) {
- best = dp[0] - prices[0];
- for (int j = 1; j < n; j++) {
- tmp = dp[j];
- dp[j] = Math.max(dp[j - 1], best + prices[j]);
- best = Math.max(best, tmp - prices[j]);
- }
- }
- return dp[n - 1];
- }
- }
复制代码 dp[j]表示从0-j天最多买卖i次所能获得的最大收益
714. 买卖股票的最佳机遇含手续费 - 力扣(LeetCode)
- public class Code05_Stack5 {
- public static int maxProfit(int[] prices, int fee) {
- // prepare : 交易次数无限制情况下,获得收益的同时扣掉了一次购买和手续费之后,最好的情况
- int prepare = -prices[0] - fee;
- // done : 交易次数无限制情况下,能获得的最大收益
- int done = 0;
- for (int i = 1; i < prices.length; i++) {
- done = Math.max(done, prepare + prices[i]);
- prepare = Math.max(prepare, done - prices[i] - fee);
- }
- return done;
- }
- }
复制代码 手续费无非是在卖出的时候多出一笔钱,所以和无限次购买股票是一样的
309. 买卖股票的最佳机遇含冷冻期 - 力扣(LeetCode)
- public class Code06_Stack6 {
- public static int maxProfit1(int[] prices) {
- int n = prices.length;
- if (n < 2) {
- return 0;
- }
- // prepare[i] : 0...i范围上,可以做无限次交易,获得收益的同时一定要扣掉一次购买,所有情况中的最好情况
- int[] prepare = new int[n];
- // done[i] : 0...i范围上,可以做无限次交易,能获得的最大收益
- int[] done = new int[n];
- prepare[1] = Math.max(-prices[0], -prices[1]);
- done[1] = Math.max(0, prices[1] - prices[0]);
- for (int i = 2; i < n; i++) {
- done[i] = Math.max(done[i - 1], prepare[i - 1] + prices[i]);
- prepare[i] = Math.max(prepare[i - 1], done[i - 2] - prices[i]);
- }
- return done[n - 1];
- }
- // 只是把方法1做了变量滚动更新(空间压缩)
- // 并没有新的东西
- public static int maxProfit2(int[] prices) {
- int n = prices.length;
- if (n < 2) {
- return 0;
- }
- // prepare : prepare[i-1]
- int prepare = Math.max(-prices[0], -prices[1]);
- // done2 : done[i-2]
- int done2 = 0;
- // done1 : done[i-1]
- int done1 = Math.max(0, prices[1] - prices[0]);
- for (int i = 2, curDone; i < n; i++) {
- // curDone : done[i]
- curDone = Math.max(done1, prepare + prices[i]);
- // prepare : prepare[i-1] -> prepare[i]
- prepare = Math.max(prepare, done2 - prices[i]);
- done2 = done1;
- done1 = curDone;
- }
- return done1;
- }
- }
复制代码
903. DI 序列的有效排列 - 力扣(LeetCode)
- public class Solution {
- public static int numPermsDISequence1(String s) {
- return f(s.toCharArray(), 0, s.length() + 1, s.length() + 1);
- }
- // 猜法很妙!
- // 一共有n个数字,位置范围0~n-1
- // 当前来到i位置,i-1位置的数字已经确定,i位置的数字还没确定
- // i-1位置和i位置的关系,是s[i-1] : D、I
- // 0~i-1范围上是已经使用过的数字,i个
- // 还没有使用过的数字中,比i-1位置的数字小的,有less个
- // 还没有使用过的数字中,比i-1位置的数字大的,有n - i - less个
- // 返回后续还有多少种有效的排列
- public static int f(char[] s, int i, int less, int n) {
- int ans = 0;
- if (i == n) {
- ans = 1;
- } else if (i == 0 || s[i - 1] == 'D') {
- for (int nextLess = 0; nextLess < less; nextLess++) {
- ans += f(s, i + 1, nextLess, n);
- }
- } else {
- for (int nextLess = less, k = 1; k <= n - i - less; k++, nextLess++) {
- ans += f(s, i + 1, nextLess, n);
- }
- }
- return ans;
- }
- public static int numPermsDISequence2(String str) {
- int mod = 1000000007;
- char[] s = str.toCharArray();
- int n = s.length + 1;
- int[][] dp = new int[n + 1][n + 1];
- for (int less = 0; less <= n; less++) {
- dp[n][less] = 1;
- }
- for (int i = n - 1; i >= 0; i--) {
- for (int less = 0; less <= n; less++) {
- if (i == 0 || s[i - 1] == 'D') {
- for (int nextLess = 0; nextLess < less; nextLess++) {
- dp[i][less] = (dp[i][less] + dp[i + 1][nextLess]) % mod;
- }
- } else {
- for (int nextLess = less, k = 1; k <= n - i - less; k++, nextLess++) {
- dp[i][less] = (dp[i][less] + dp[i + 1][nextLess]) % mod;
- }
- }
- }
- }
- return dp[0][n];
- }
- // 通过观察方法2,得到优化枚举的方法
- public static int numPermsDISequence(String str) {
- int mod = 1000000007;
- char[] s = str.toCharArray();
- int n = s.length + 1;
- int[][] dp = new int[n + 1][n + 1];
- for (int less = 0; less <= n; less++) {
- dp[n][less] = 1;
- }
- for (int i = n - 1; i >= 0; i--) {
- if (i == 0 || s[i - 1] == 'D') {
- dp[i][1] = dp[i + 1][0];
- for (int less = 2; less <= n; less++) {
- dp[i][less] = (dp[i][less - 1] + dp[i + 1][less - 1]) % mod;
- }
- } else {
- dp[i][n - i - 1] = dp[i + 1][n - i - 1];
- for (int less = n - i - 2; less >= 0; less--) {
- dp[i][less] = (dp[i][less + 1] + dp[i + 1][less]) % mod;
- }
- }
- }
- return dp[0][n];
- }
- }
复制代码
1235. 规划兼职工作 - 力扣(LeetCode)
- public class Code01_MaximumProfitInJobScheduling {
- public static int MAXN = 50001;
- public static int[][] jobs = new int[MAXN][3];
- public static int[] dp = new int[MAXN];
- public static int jobScheduling(int[] startTime, int[] endTime, int[] profit) {
- int n = startTime.length;
- for (int i = 0; i < n; i++) {
- jobs[i][0] = startTime[i];
- jobs[i][1] = endTime[i];
- jobs[i][2] = profit[i];
- }
- // 工作按照结束时间从小到大排序
- Arrays.sort(jobs, 0, n, (a, b) -> a[1] - b[1]);
- dp[0] = jobs[0][2];
- for (int i = 1, start; i < n; i++) {
- start = jobs[i][0];
- dp[i] = jobs[i][2];
- if (jobs[0][1] <= start) {
- dp[i] += dp[find(i - 1, start)];
- }
- dp[i] = Math.max(dp[i], dp[i - 1]);
- }
- return dp[n - 1];
- }
- // job[0...i]范围上,找到结束时间 <= start,最右的下标
- public static int find(int i, int start) {
- int ans = 0;
- int l = 0;
- int r = i;
- int m;
- while (l <= r) {
- m = (l + r) / 2;
- if (jobs[m][1] <= start) {
- ans = m;
- l = m + 1;
- } else {
- r = m - 1;
- }
- }
- return ans;
- }
- }
复制代码 按照结束时间从小到大排序,才不会错过最大的利益
629. K 个逆序对数组 - 力扣(LeetCode)
- public class Solution {
- // 最普通的动态规划
- // 不优化枚举
- public static int kInversePairs1(int n, int k) {
- int mod = 1000000007;
- // dp[i][j] : 1、2、3...i这些数字,形成的排列一定要有j个逆序对,请问这样的排列有几种
- int[][] dp = new int[n + 1][k + 1];
- dp[0][0] = 1;
- for (int i = 1; i <= n; i++) {
- dp[i][0] = 1;
- for (int j = 1; j <= k; j++) {
- if (i > j) {
- for (int p = 0; p <= j; p++) {
- dp[i][j] = (dp[i][j] + dp[i - 1][p]) % mod;
- }
- } else {
- // i <= j
- for (int p = j - i + 1; p <= j; p++) {
- dp[i][j] = (dp[i][j] + dp[i - 1][p]) % mod;
- }
- }
- }
- }
- return dp[n][k];
- }
- public static int kInversePairs(int n, int k) {
- int mod = 1000000007;
- int[][] dp = new int[n + 1][k + 1];
- dp[0][0] = 1;
- // window : 窗口的累加和
- for (int i = 1, window; i <= n; i++) {
- dp[i][0] = 1;
- window = 1;
- for (int j = 1; j <= k; j++) {
- if (i > j) {
- window = (window + dp[i - 1][j]) % mod;
- } else {
- // i <= j
- window = ((window + dp[i - 1][j]) % mod - dp[i - 1][j - i] + mod) % mod;
- }
- dp[i][j] = window;
- }
- }
- return dp[n][k];
- }
- }
复制代码
514. 自由之路 - 力扣(LeetCode)
- public class Solution {
- // 为了让所有语言的同学都可以理解
- // 不会使用任何java语言自带的数据结构
- // 只使用最简单的数组结构
- public static int MAXN = 101;
- public static int MAXC = 26;
- public static int[] ring = new int[MAXN];
- public static int[] key = new int[MAXN];
- public static int[] size = new int[MAXC];
- public static int[][] where = new int[MAXC][MAXN];
- public static int[][] dp = new int[MAXN][MAXN];
- public static int n, m;
- public static void build(String r, String k) {
- for (int i = 0; i < MAXC; i++) {
- size[i] = 0;
- }
- n = r.length();
- m = k.length();
- for (int i = 0, v; i < n; i++) {
- v = r.charAt(i) - 'a';
- where[v][size[v]++] = i;
- ring[i] = v;
- }
- for (int i = 0; i < m; i++) {
- key[i] = k.charAt(i) - 'a';
- }
- for (int i = 0; i < n; i++) {
- for (int j = 0; j < m; j++) {
- dp[i][j] = -1;
- }
- }
- }
- public static int findRotateSteps(String r, String k) {
- build(r, k);
- return f(0, 0);
- }
- // 指针当前指着轮盘i位置的字符,要搞定key[j....]所有字符,最小代价返回
- public static int f(int i, int j) {
- if (j == m) {
- // key长度是m
- // 都搞定
- return 0;
- }
- if (dp[i][j] != -1) {
- return dp[i][j];
- }
- int ans;
- if (ring[i] == key[j]) {
- // ring b
- // i
- // key b
- // j
- ans = 1 + f(i, j + 1);
- } else {
- // 轮盘处在i位置,ring[i] != key[j]
- // jump1 : 顺时针找到最近的key[j]字符在轮盘的什么位置
- // distance1 : 从i顺时针走向jump1有多远
- int jump1 = clock(i, key[j]);
- int distance1 = (jump1 > i ? (jump1 - i) : (n - i + jump1));
- // jump2 : 逆时针找到最近的key[j]字符在轮盘的什么位置
- // distance2 : 从i逆时针走向jump2有多远
- int jump2 = counterClock(i, key[j]);
- int distance2 = (i > jump2 ? (i - jump2) : (i + n - jump2));
- ans = Math.min(distance1 + f(jump1, j), distance2 + f(jump2, j));
- }
- dp[i][j] = ans;
- return ans;
- }
- // 从i开始,顺时针找到最近的v在轮盘的什么位置
- public static int clock(int i, int v) {
- int l = 0;
- // size[v] : 属于v这个字符的下标有几个
- int r = size[v] - 1, m;
- // sorted[0...size[v]-1]收集了所有的下标,并且有序
- int[] sorted = where[v];
- int find = -1;
- // 有序数组中,找>i尽量靠左的下标
- while (l <= r) {
- m = (l + r) / 2;
- if (sorted[m] > i) {
- find = m;
- r = m - 1;
- } else {
- l = m + 1;
- }
- }
- // 找到了就返回
- // 没找到,那i顺指针一定先走到最小的下标
- return find != -1 ? sorted[find] : sorted[0];
- }
- public static int counterClock(int i, int v) {
- int l = 0;
- int r = size[v] - 1, m;
- int[] sorted = where[v];
- int find = -1;
- // 有序数组中,找<i尽量靠右的下标
- while (l <= r) {
- m = (l + r) / 2;
- if (sorted[m] < i) {
- find = m;
- l = m + 1;
- } else {
- r = m - 1;
- }
- }
- // 找到了就返回
- // 没找到,那i逆指针一定先走到最大的下标
- return find != -1 ? sorted[find] : sorted[size[v] - 1];
- }
- }
复制代码
未排序数组中累加和小于或等于给定值的最宗子数组长度_牛客题霸_牛客网 (nowcoder.com)
- import java.io.BufferedReader;
- import java.io.IOException;
- import java.io.InputStreamReader;
- import java.io.OutputStreamWriter;
- import java.io.PrintWriter;
- import java.io.StreamTokenizer;
- // 至今的最优解,全网题解几乎都是我几年前讲的方法
- public class Main {
- public static int MAXN = 100001;
- public static int[] nums = new int[MAXN];
- public static int[] minSums = new int[MAXN];
- public static int[] minSumEnds = new int[MAXN];
- public static int n, k;
- public static void main(String[] args) throws IOException {
- BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
- StreamTokenizer in = new StreamTokenizer(br);
- PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));
- while (in.nextToken() != StreamTokenizer.TT_EOF) {
- n = (int) in.nval;
- in.nextToken();
- k = (int) in.nval;
- for (int i = 0; i < n; i++) {
- in.nextToken();
- nums[i] = (int) in.nval;
- }
- out.println(compute1());
- }
- out.flush();
- out.close();
- br.close();
- }
- public static int compute1() {
- int[] sums = new int[n + 1];
- for (int i = 0, sum = 0; i < n; i++) {
- // sum : 0...i范围上,这前i+1个数字的累加和
- sum += nums[i];
- // sums[i + 1] : 前i+1个,包括一个数字也没有的时候,所有前缀和中的最大值
- sums[i + 1] = Math.max(sum, sums[i]);
- }
- int ans = 0;
- for (int i = 0, sum = 0, pre, len; i < n; i++) {
- sum += nums[i];
- pre = find(sums, sum - k);
- len = pre == -1 ? 0 : i - pre + 1;
- ans = Math.max(ans, len);
- }
- return ans;
- }
- public static int find(int[] sums, int num) {
- int l = 0;
- int r = n;
- int m = 0;
- int ans = -1;
- while (l <= r) {
- m = (l + r) / 2;
- if (sums[m] >= num) {
- ans = m;
- r = m - 1;
- } else {
- l = m + 1;
- }
- }
- return ans;
- }
- public static int compute2() {
- minSums[n - 1] = nums[n - 1];
- minSumEnds[n - 1] = n - 1;
- for (int i = n - 2; i >= 0; i--) {
- if (minSums[i + 1] < 0) {
- minSums[i] = nums[i] + minSums[i + 1];
- minSumEnds[i] = minSumEnds[i + 1];
- } else {
- minSums[i] = nums[i];
- minSumEnds[i] = i;
- }
- }
- int ans = 0;
- for (int i = 0, sum = 0, end = 0; i < n; i++) {
- while (end < n && sum + minSums[end] <= k) {
- sum += minSums[end];
- end = minSumEnds[end] + 1;
- }
- if (end > i) {
- // 如果end > i,
- // 窗口范围:i...end-1,那么窗口有效
- ans = Math.max(ans, end - i);
- sum -= nums[i];
- } else {
- // 如果end == i,那么说明窗口根本没扩出来,代表窗口无效
- // end来到i+1位置,然后i++了
- // 继续以新的i位置做开头去扩窗口
- end = i + 1;
- }
- }
- return ans;
- }
- }
复制代码
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!更多信息从访问主页:qidao123.com:ToB企服之家,中国第一个企服评测及商务社交产业平台。 |