Python 动态网页Fetch/XHR爬虫——以获取NBA球员信息为例
动态网页抓取信息,一般利用F12开发者工具-网络-Fetch/XHR获取信息,实现难点有:
- 动态网页的加载方式
- 获取请求Url
- 编排处理Headers
- 分析返回的数据Json
- pandas DataFrame的处理
我们本次想获取的信息如下:
成功获取到的csv一共506位球员,具体如下:

实现代码:- import requests
- import pandas as pd
-
- def get_headers(header_raw):
- return dict(line.split(": ", 1) for line in header_raw.split("\n") if line != '')
-
- # 设置headers
- headers_str = '''
- accept: application/json, text/plain, */*
- accept-encoding: gzip, deflate, br
- accept-language: zh-CN,zh;q=0.9
- referer: https://china.nba.cn/playerindex/
- sec-ch-ua: " Not A;Brand";v="99", "Chromium";v="96", "Google Chrome";v="96"
- sec-ch-ua-mobile: ?0
- sec-ch-ua-platform: "Windows"
- sec-fetch-dest: empty
- sec-fetch-mode: cors
- sec-fetch-site: same-origin
- cookie: sensorsdata2015jssdkcross=%7B%22distinct_id%22%3A%22182d0029f842fc-0d281a685dd4e08-4303066-2400692-182d0029f85406%22%2C%22first_id%22%3A%22%22%2C%22props%22%3A%7B%22%24latest_traffic_source_type%22%3A%22%E7%9B%B4%E6%8E%A5%E6%B5%81%E9%87%8F%22%2C%22%24latest_search_keyword%22%3A%22%E6%9C%AA%E5%8F%96%E5%88%B0%E5%80%BC_%E7%9B%B4%E6%8E%A5%E6%89%93%E5%BC%80%22%2C%22%24latest_referrer%22%3A%22%22%7D%2C%22identities%22%3A%22eyIkaWRlbnRpdHlfY29va2llX2lkIjoiMTgyZDAwMjlmODQyZmMtMGQyODFhNjg1ZGQ0ZTA4LTQzMDMwNjYtMjQwMDY5Mi0xODJkMDAyOWY4NTQwNiJ9%22%2C%22history_login_id%22%3A%7B%22name%22%3A%22%22%2C%22value%22%3A%22%22%7D%2C%22%24device_id%22%3A%22182d0029f842fc-0d281a685dd4e08-4303066-2400692-182d0029f85406%22%7D; privacyV2=true; i18next=zh_CN; locale=zh_CN
- user-agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/96.0.4664.110 Safari/537.36
- '''
- headers = get_headers(headers_str)
- # print(headers)
-
- # requests请求
- param = {'locale': 'zh_CN'}
- url = 'https://china.nba.cn/stats2/league/playerlist.json'
- response = requests.get(url=url, headers=headers, params=param)
-
- print('返回状态码:', response.status_code)
- print('编码:', response.encoding)
-
- # json解码成字典
- myjson = response.json()
-
- # 保存为pandas DataFrame
- # print(players_dicts['playerProfile'])
- # print(players_dicts['teamProfile'])
-
- # 遍历选手信息
- players_info = []
- for players_dicts in myjson['payload']['players']:
- players_info.append(pd.DataFrame([players_dicts['playerProfile']]))
-
- # 遍历队伍简介信息
- teams_info = []
- for players_dicts in myjson['payload']['players']:
- teams_info.append(pd.DataFrame([players_dicts['teamProfile']]))
-
- # 得到两个DataFrame
- players_pandas = pd.concat(players_info)
- teams_pandas = pd.concat(teams_info)
-
- # 合并得到最终DataFrame
- result = pd.concat([players_pandas, teams_pandas], axis=1)
- result.to_csv(r'C:\Users\WeiRonbbin\Desktop\NBA_Players1.csv')
复制代码 免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作! |