马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?立即注册
x
直接上代码:
- from selenium import webdriver
- from selenium.webdriver.common.action_chains import ActionChains
- import time,re,requests
- from selenium.webdriver.common.by import By
- from selenium.webdriver.support.ui import WebDriverWait
- from selenium.webdriver.support import expected_conditions as EC
- from PIL import Image
- import os,cv2
- import sys
- path = os.path.dirname(os.path.dirname(__file__))
- sys.path.append(path)
- class main():
- def __init__(self):
- self.url = 'https://static-mp-dc3bab1b-06be-41ca-9070-ab7368c17ae5.next.bspapp.com/'
- self.distance = 0
- self.left = 0
- self.track = []
- # 启动浏览器
- def Launch_browser(self):
- options = webdriver.ChromeOptions()
- options.add_argument('--headless')
- # self.driver = webdriver.Chrome(options=options)
- self.driver = webdriver.Chrome()
- self.wait = WebDriverWait(self.driver, 10, 0.5)
- self.driver.get(self.url)
- self.driver.find_element(By.XPATH,'/html/body/button').click()
- # 等待className为geetest_slider_button的元素在元素表中出现
- time.sleep(5)
- element = WebDriverWait(self.driver, 10).until(
- EC.visibility_of_element_located((By.CLASS_NAME, 'tcaptcha-transform'))
- )
- time.sleep(5)
- # 切换到iframe
- # 假设iframe有id或者其他属性,可以通过这些属性定位
- self.iframe = self.driver.find_element(By.ID,'tcaptcha_iframe_dy')
- self.driver.switch_to.frame(self.iframe)
- self.slider = self.driver.find_element(By.XPATH, '/html/body/div/div[3]/div[2]/div[7]')
- self.sliderImg = self.driver.find_element(By.XPATH, '/html/body/div/div[3]/div[2]/div[1]/div[2]/div')
- sliderImg_background_image_url = self.sliderImg.value_of_css_property('background-image')
- sliderImg_background_image_url = sliderImg_background_image_url[5:len(sliderImg_background_image_url) - 3]
- resp = requests.get(sliderImg_background_image_url)
- with open('./sliderImg.png', 'wb') as f:
- f.write(resp.content)
- slider_background_image_url = self.slider.value_of_css_property('background-image')
- slider_background_image_url = slider_background_image_url[5:len(slider_background_image_url) - 3]
- resp = requests.get(slider_background_image_url)
- with open('./slider.png', 'wb') as f:
- f.write(resp.content)
- # 150,270
- # 500,600
- image = Image.open('./slider.png')
- bg = image.crop([130, 479, 272, 622])
- bg.save('slider.png')
- import ddddocr
- det = ddddocr.DdddOcr(det=False, ocr=True, show_ad=False)
- with open('slider.png', 'rb') as f:
- target_bytes = f.read()
- with open('sliderImg.png', 'rb') as f:
- background_bytes = f.read()
- res = det.slide_match(target_bytes, background_bytes, simple_target=True)
- print(res)
- self.distance = res['target'][0]
- self.left = self.slider.value_of_css_property('left').split('px')[0]
- self.left = eval(self.left)
- xoffset = int(self.distance * 0.51)
- print(xoffset)
- verify_img = cv2.imread('sliderImg.png')
- # 调用函数,得到x坐标
- x = get_pos(verify_img)
- x = int(x * 0.51) - 30
- # 实现拖拽滑动
- ActionChains(self.driver).click_and_hold(self.slider).perform()
- ActionChains(self.driver).move_by_offset(x, 0).perform()
- ActionChains(self.driver).release().perform()
- self.quit()
- # 关闭浏览器
- def quit(self):
- time.sleep(10)
- self.driver.quit()
- # main方法
- def main(self):
- self.Launch_browser()
- # self.cjy()
- # self.move()
- # self.quit()
- # 定义一个处理图片缺口的函数,最后是返回x坐标,滑块移动不需要y坐标
- def get_pos(image):
- # 首先使用高斯模糊去噪,噪声会影响边缘检测的准确性,因此首先要将噪声过滤掉
- blurred = cv2.GaussianBlur(image, (5, 5), 0, 0)
- # 边缘检测,得到图片轮廓
- canny = cv2.Canny(blurred, 200, 400) # 200为最小阈值,400为最大阈值,可以修改阈值达到不同的效果
- # 轮廓检测
- # cv2.findContours()函数接受的参数为二值图,即黑白的(不是灰度图),所以读取的图像要先转成灰度的,再转成二值图,此处canny已经是二值图
- # contours:所有的轮廓像素坐标数组,hierarchy 轮廓之间的层次关系
- contours, hierarchy = cv2.findContours(canny, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
- # print(contours, hierarchy)
- for i, contour in enumerate(contours): # 对所有轮廓进行遍历
- M = cv2.moments(contour) # 并计算每一个轮廓的力矩(Moment),就可以得出物体的质心位置
- # print(M)
- if M['m00'] == 0:
- cx = cy = 0
- else:
- # 得到质心位置,打印这个轮廓的面积和周长,用于过滤
- cx, cy = M['m10'] / M['m00'], M['m01'] / M['m00']
- print(cv2.contourArea(contour), cv2.arcLength(contour, True))
- # 判断这个轮廓是否在这个面积和周长的范围内
- if 5000 < cv2.contourArea(contour) < 8000 and 300 < cv2.arcLength(contour, True) < 500:
- print(cx)
- if cx < 300:
- continue
- print(cv2.contourArea(contour))
- print(cv2.arcLength(contour, True))
- # 外接矩形,x,y是矩阵左上点的坐标,w,h是矩阵的宽和高
- x, y, w, h = cv2.boundingRect(contour)
- cv2.rectangle(image, (x, y), (x + w, y + h), (0, 0, 255), 2) # 画出矩行
- # cv2.imshow('image', image)
- cv2.imwrite('111.jpg', image) # 保存
- return x
- return 0
- if __name__ == '__main__':
- ma = main()
- ma.main()
复制代码 结果展示:

Tip:用的是腾讯提供的web端接入示例
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!更多信息从访问主页:qidao123.com:ToB企服之家,中国第一个企服评测及商务社交产业平台。 |