引言
随着大数据的发展,任务调度系统成为了数据处理处罚和管理中至关紧张的部分。Apache DolphinScheduler 是一款优秀的开源分布式工作流调度平台,在大数据场景中得到广泛应用。
在本文中,我们将对 Apache DolphinScheduler 1.3.9 版本的源码进行深入分析,主要分析一下Master和Worker的交互设计。
感兴趣的朋侪也可以回顾我们上一篇文章:Apache DolphinScheduler-1.3.9源码分析(一)
Worker配置文件
- # worker listener port
- worker.listen.port=1234
- # worker execute thread number to limit task instances in parallel
- # worker可并行的任务数限制
- worker.exec.threads=100
- # worker heartbeat interval, the unit is second
- # worker发送心跳间隔
- worker.heartbeat.interval=10
- # worker max cpuload avg, only higher than the system cpu load average, worker server can be dispatched tasks. default value -1: the number of cpu cores * 2
- # worker最大cpu平均负载,只有系统cpu平均负载低于该值,才能执行任务
- # 默认值为-1,则最大cpu平均负载=系统cpu核数 * 2
- worker.max.cpuload.avg=-1
- # worker reserved memory, only lower than system available memory, worker server can be dispatched tasks. default value 0.3, the unit is G
- # worker的预留内存,只有当系统可用内存大于等于该值,才能执行任务,单位为GB
- # 默认0.3G
- worker.reserved.memory=0.3
- # default worker groups separated by comma, like 'worker.groups=default,test'
- # 工作组名称,多个用,隔开
- worker.groups=default
复制代码 WorkerServer启动
- public void run() {
- // init remoting server
- NettyServerConfig serverConfig = new NettyServerConfig();
- serverConfig.setListenPort(workerConfig.getListenPort());
- this.nettyRemotingServer = new NettyRemotingServer(serverConfig);
- this.nettyRemotingServer.registerProcessor(CommandType.TASK_EXECUTE_REQUEST, new TaskExecuteProcessor());
- this.nettyRemotingServer.registerProcessor(CommandType.TASK_KILL_REQUEST, new TaskKillProcessor());
- this.nettyRemotingServer.registerProcessor(CommandType.DB_TASK_ACK, new DBTaskAckProcessor());
- this.nettyRemotingServer.registerProcessor(CommandType.DB_TASK_RESPONSE, new DBTaskResponseProcessor());
- this.nettyRemotingServer.start();
- // worker registry
- try {
- this.workerRegistry.registry();
- this.workerRegistry.getZookeeperRegistryCenter().setStoppable(this);
- Set<String> workerZkPaths = this.workerRegistry.getWorkerZkPaths();
- this.workerRegistry.getZookeeperRegistryCenter().getRegisterOperator().handleDeadServer(workerZkPaths, ZKNodeType.WORKER, Constants.DELETE_ZK_OP);
- } catch (Exception e) {
- logger.error(e.getMessage(), e);
- throw new RuntimeException(e);
- }
- // retry report task status
- this.retryReportTaskStatusThread.start();
- /**
- * register hooks, which are called before the process exits
- */
- Runtime.getRuntime().addShutdownHook(new Thread(() -> {
- if (Stopper.isRunning()) {
- close("shutdownHook");
- }
- }));
- }
复制代码 注册四个Command:
- TASK_EXECUTE_REQUEST:task执行哀求
- TASK_KILL_REQUEST:task制止哀求
- DB_TASK_ACK:Worker担当到Master的调度哀求,回应master
- DB_TASK_RESPONSE:
- 注册WorkerServer到Zookeeper,并发送心跳
- 陈诉Task执行状态
RetryReportTaskStatusThread
这是一个兜底机制,主要负责定时轮询向Master汇报任务的状态,直到Master回复状态的ACK,避免任务状态丢失;
每隔5分钟,查抄一下responceCache中的ACK Cache和Response Cache是否为空,如果不为空则向Master发送ack_command和response command哀求。- public void run() {
- ResponceCache responceCache = ResponceCache.get();
- while (Stopper.isRunning()){
- // sleep 5 minutes
- ThreadUtils.sleep(RETRY_REPORT_TASK_STATUS_INTERVAL);
- try {
- if (!responceCache.getAckCache().isEmpty()){
- Map<Integer,Command> ackCache = responceCache.getAckCache();
- for (Map.Entry<Integer, Command> entry : ackCache.entrySet()){
- Integer taskInstanceId = entry.getKey();
- Command ackCommand = entry.getValue();
- taskCallbackService.sendAck(taskInstanceId,ackCommand);
- }
- }
- if (!responceCache.getResponseCache().isEmpty()){
- Map<Integer,Command> responseCache = responceCache.getResponseCache();
- for (Map.Entry<Integer, Command> entry : responseCache.entrySet()){
- Integer taskInstanceId = entry.getKey();
- Command responseCommand = entry.getValue();
- taskCallbackService.sendResult(taskInstanceId,responseCommand);
- }
- }
- }catch (Exception e){
- logger.warn("retry report task status error", e);
- }
- }
- }
复制代码 Master与Worker的交互设计
Apache DolphinScheduler Master和Worker模块是两个独立的JVM进程,可以部署在差别的服务器上,Master与Worker的通信都是通过Netty实现RPC交互的,一共用到7种处理处罚器。
模块处理处罚器作用mastermasterTaskResponseProcessor处理处罚TaskExecuteResponseCommand消息,将消息添加到TaskResponseService的任务相应队列中mastermasterTaskAckProcessor处理处罚TaskExecuteAckCommand消息,将消息添加到TaskResponseService的任务相应队列中mastermasterTaskKillResponseProcessor处理处罚TaskKillResponseCommand消息,并在日记中打印消息内容workerworkerTaskExecuteProcessor处理处罚TaskExecuteRequestCommand消息,并发送TaskExecuteAckCommand到master,提交任务执行workerworkerTaskKillProcessor处理处罚TaskKillRequestCommand消息,调用kill -9 pid杀死任务对应的进程,并向master发送TaskKillResponseCommand消息workerworkerDBTaskAckProcessor处理处罚DBTaskAckCommand消息,针对执行成功的任务,从ResponseCache中删除workerworkerDBTaskResponseProcessor处理处罚DBTaskResponseCommand消息,针对执行成功的任务,从ResponseCache中删除分发任务如何交互
master#TaskPriorityQueueConsumer
Master任务里有一个TaskPriorityQueueConsumer,会从TaskPriorityQueue里每次取3个Task分发给Worker执行,这里会创建TaskExecuteRequestCommand。
TaskPriorityQueueConsumer#run()
[code]@Overridepublic void run() { List failedDispatchTasks = new ArrayList(); while (Stopper.isRunning()){ try { // 每一批次分发任务数量,master.dispatch.task.num = 3 int fetchTaskNum = masterConfig.getMasterDispatchTaskNumber(); failedDispatchTasks.clear(); for(int i = 0; i < fetchTaskNum; i++){ if(taskPriorityQueue.size() |