dlib人脸关键点绘制及微笑测试
1 dlib人脸关键点
1.1 dlib
dlib 是一个强盛的呆板学习库,广泛用于人脸检测和人脸关键点检测。它提供了一个预训练的 68 点人脸关键点检测模型,可以正确地定位人脸的各个部位(如眼睛、鼻子、嘴巴等)
1.2 人脸关键点检测
dlib 的 68 点人脸关键点检测模型基于 HOG(Histogram of Oriented Gradients)特性和线性分类器,联合了形状预测算法。它可以检测人脸的以下区域:
下巴(0-16)
右眉毛(17-21)
左眉毛(22-26)
鼻子(27-35)
右眼(36-41)
左眼(42-47)
嘴巴(48-67)
1.3 检测模型
dlib 提供了一个预训练的 68 点人脸关键点检测模型,可以从以下链接下载:
https://github.com/davisking/dlib-models/blob/master/shape_predictor_68_face_landmarks.dat.bz2/
1.4 凸包
凸包(Convex Hull) 是计算多少中的一个重要概念,指的是在二维或更高维空间中,包含一组点的最小凸多边形或凸多面体。凸包在图像处置惩罚、计算机视觉、模式辨认等领域有广泛应用,例如在人脸关键点检测中,可以用凸包来界说人脸区域的边界。
1.5 笑容检测
界说了两个函数,MAR:衡量嘴巴的伸开水平,
和MJR:衡量嘴巴宽度与下巴宽度的比例,
人脸关键点如上,当微笑时嘴巴长款和面颊长度都会发生改变,通过两个函数举行比较检测,举行判定是否微笑
- def MAR(shape):
- x = shape[50]
- y = shape[50].reshape(1,2)
- A = euclidean_distances(shape[50].reshape(1,2),shape[58].reshape(1,2))
- B = euclidean_distances(shape[51].reshape(1,2),shape[57].reshape(1,2))
- C = euclidean_distances(shape[52].reshape(1,2),shape[56].reshape(1,2))
- D = euclidean_distances(shape[48].reshape(1,2),shape[54].reshape(1,2))
- return ((A+B+C)/3)/D
- def MJR(shape):
- M = euclidean_distances(shape[48].reshape(1,2),shape[54].reshape(1,2))
- J = euclidean_distances(shape[3].reshape(1,2),shape[13].reshape(1,2))
- return M/J
复制代码 1.6 函数
- detector = dlib.get_frontal_face_detector() ,加载人脸检测器
- predictor = dlib.shape_predictor(‘shape_predictor_68_face_landmarks.dat’) 关键点预测器
- detector(gray, 1) ,检测人脸
- gray检测的灰度图
- 1 表示对图像举行上采样次数
2 人脸检测代码
2.1 关键点绘制
代码展示:
- import cv2
- import numpy as np
- import dlib
- img = cv2.imread('lyf.png')
- detector = dlib.get_frontal_face_detector()
- faces = detector(img,0)
- predictor = dlib.shape_predictor('shape_predictor_68_face_landmarks.dat')
- for face in faces:
- shape = predictor(img,face)
- landmarks = np.array([[p.x,p.y] for p in shape.parts()])
- for idx,point in enumerate(landmarks):
- pos = [point[0],point[1]]
- cv2.circle(img,pos,2,color=(0,255,0),thickness=-1)
- cv2.putText(img,str(idx),pos,cv2.FONT_HERSHEY_SCRIPT_SIMPLEX,0.4,(255,255,255),1,cv2.LINE_AA)
- cv2.imshow('img',img)
- cv2.waitKey(0)
- cv2.destroyAllWindows()
复制代码 运行结果:
2.2 关键点连线
代码展示:
- import cv2
- import numpy as np
- import dlib
- def drawLine(start,end):
- pts = shape[start:end]
- for l in range(1,len(pts)):
- pta = tuple(pts[l-1])
- ptb = tuple(pts[l])
- cv2.line(img,pta,ptb,(0,255,0),1)
- def drawConvexHull(start,end):
- facial = shape[start:end+1]
- mouthHull = cv2.convexHull(facial)
- cv2.drawContours(img,[mouthHull],-1,(0,255,0),1)
- img = cv2.imread('lyf.png')
- detector = dlib.get_frontal_face_detector()
- faces = detector(img,0)
- predictor = dlib.shape_predictor('shape_predictor_68_face_landmarks.dat')
- for face in faces:
- shape = predictor(img,face)
- shape = np.array([[p.x,p.y] for p in shape.parts()])
- drawConvexHull(36,41)
- drawConvexHull(42,47)
- drawConvexHull(48, 59)
- drawConvexHull(60, 67)
- drawLine(0,17)
- drawLine(17, 22)
- drawLine(22, 27)
- drawLine(27, 36)
- cv2.imshow('img',img)
- cv2.waitKey(0)
- cv2.destroyAllWindows()
复制代码 运行结果:
2.3 微笑检测
代码展示:
- import cv2import numpy as npimport dlibdetector = dlib.get_frontal_face_detector()predictor = dlib.shape_predictor('shape_predictor_68_face_landmarks.dat')v = cv2.VideoCapture('jjy_dyx.mp4')from sklearn.metrics.pairwise import euclidean_distancesfrom PIL import Image, ImageDraw, ImageFontdef cv2AddChineseText(img, text, position, textColor=(255, 255, 255), textSize=30): """ 向图片中添加中文 """ if (isinstance(img, np.ndarray)): # 判定是否OpenCV图片类型 img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))#实现array到image的转换 draw = ImageDraw.Draw(img)# 在img图片上创建一个画图的对象 # 字体的格式 fontStyle = ImageFont.truetype("simsun.ttc", textSize, encoding="utf-8") draw.text(position, text, textColor, font=fontStyle) # 绘制文本 return cv2.cvtColor(np.asarray(img), cv2.COLOR_RGB2BGR)# 转换回OpenCV格式def MAR(shape):
- x = shape[50]
- y = shape[50].reshape(1,2)
- A = euclidean_distances(shape[50].reshape(1,2),shape[58].reshape(1,2))
- B = euclidean_distances(shape[51].reshape(1,2),shape[57].reshape(1,2))
- C = euclidean_distances(shape[52].reshape(1,2),shape[56].reshape(1,2))
- D = euclidean_distances(shape[48].reshape(1,2),shape[54].reshape(1,2))
- return ((A+B+C)/3)/D
- def MJR(shape):
- M = euclidean_distances(shape[48].reshape(1,2),shape[54].reshape(1,2))
- J = euclidean_distances(shape[3].reshape(1,2),shape[13].reshape(1,2))
- return M/J
- while True: r,img = v.read() if not r: break faces = detector(img,0) for face in faces: shape = predictor(img,face) shape= np.array([[p.x,p.y] for p in shape.parts()]) mar = MAR(shape) mjr =MJR(shape) result = '正常' print('mar:',mar,'mjr:',mjr) if mar>0.5: result = '大笑' elif mjr>0.4: result = '微笑' mouthHull = cv2.convexHull(shape[48:61]) img = cv2AddChineseText(img,result,mouthHull[0,0],1) cv2.drawContours(img,[mouthHull],-1,(0,255,0),1) cv2.imshow('img', img) key = cv2.waitKey(1) if key == 32: breakv.release()cv2.waitKey(0)cv2.destroyAllWindows()
复制代码 运行结果:

免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!更多信息从访问主页:qidao123.com:ToB企服之家,中国第一个企服评测及商务社交产业平台。 |